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Abstract 

Background:  Animal breeding programs have been very successful in improving the mean levels of traits through 
selection. However, in recent decades, reducing the variability of trait levels between individuals has become a highly 
desirable objective. Reaching this objective through genetic selection requires that there is genetic variation in the 
variability of trait levels, a phenomenon known as genetic heterogeneity of environmental (residual) variance. The 
aim of our study was to investigate the potential for genetic improvement of uniformity of harvest weight and body 
size traits (length, depth, and width) in the genetically improved farmed tilapia (GIFT) strain. In order to quantify the 
genetic variation in uniformity of traits and estimate the genetic correlations between level and variance of the traits, 
double hierarchical generalized linear models were applied to individual trait values.

Results:  Our results showed substantial genetic variation in uniformity of all analyzed traits, with genetic coefficients 
of variation for residual variance ranging from 39 to 58 %. Genetic correlation between trait level and variance was 
strongly positive for harvest weight (0.60 ± 0.09), moderate and positive for body depth (0.37 ± 0.13), but not signifi-
cantly different from 0 for body length and width.

Conclusions:  Our results on the genetic variation in uniformity of harvest weight and body size traits show good 
prospects for the genetic improvement of uniformity in the GIFT strain. A high and positive genetic correlation was 
estimated between level and variance of harvest weight, which suggests that selection for heavier fish will also result 
in more variation in harvest weight. Simultaneous improvement of harvest weight and its uniformity will thus require 
index selection.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In animal breeding, particular attention is paid to 
improving the mean level of traits through selection 
and this has been successful for many breeding pro-
grams. One such successful example is the genetically 
improved farmed tilapia (GIFT) project, which was led 
at WorldFish [1] and resulted in a line of tilapia known 
as the GIFT-strain. For this strain, a substantial realized 
genetic gain (>100  %) was achieved through 12 genera-
tions of genetic improvement for body weight at harvest 
[2, 3]. However, it is often desirable not only to improve 

the level of a trait, but also to reduce its variability [4, 5], 
because significant variation around the optimal value of 
a trait can have a negative impact on production perfor-
mance, both in livestock and aquaculture [5–7]. In fish 
farming, differences in size among individuals are gener-
ally associated with competition for food within a group 
and the resulting feeding hierarchy [6, 8, 9]. The pheno-
typic coefficient of variation (CV) for body weight, apart 
from indicating variation of the trait is also an indicator 
of competitive interactions within a population [8]. For 
the GIFT strain, the CV ranges from 40 to 60 %, which is 
considered a high value [10].

Although good management during the grow-out 
phase can help reduce the CV, as noted by Ponzoni et al. 
[2], its average value across eight generations of GIFT 
remained at around 40  %. A common approach in fish 
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farming to decrease phenotypic variation in body size 
and weight is to grade or sort fish into groups, accord-
ing to size. If fish are not graded, the large variation in 
weight and size at harvest reduces their market value and 
has animal welfare consequences [11, 12]. From the point 
of view of fish farmers, uniformity of growth and body 
size is one of the key traits to be improved [11]. From the 
consumer’s point of view, weight but also body size and 
appearance traits, play an important role in buying deci-
sions [13–15].

An alternative approach to management procedures 
for reducing the variability of a trait is selective breed-
ing. Selection for more uniform individuals requires 
that the variability of the trait itself has a genetic com-
ponent i.e. that there is genetic variation, which is 
also known as genetic heterogeneity of environmental 
(residual) variance [16, 17]. In this case, within a popu-
lation, some animals will be less prone than others to 
phenotypic changes in response to small environmen-
tal fluctuations, and thus will have a more stable per-
formance. Several studies on livestock and laboratory 
animals have demonstrated the existence of genetic 
differences in residual variance among genotypes and 
have quantified their magnitude [7, 16, 18–28]. In 
aquaculture species, evidence for substantial genetic 
heterogeneity of residual variance comes from three 
studies on body weight in salmonids [29–31]. A pre-
vious study on uniformity in Nile tilapia that analyzed 
the standard deviation of harvest weight using a tra-
ditional linear mixed model indicated a genetic basis 
for variability of harvest weight [12]. However, to date, 
variability of harvest weight in Nile tilapia has not been 
analyzed at the variance level using double hierarchical 
generalized linear models (DHGLM). The DHGLM is a 
novel approach that can be used to study uniformity of 
individual trait values. The advantage of DHGLM com-
pared to analyzing variance or the standard deviation 
of a group is that it can take into account systematic 
effects on the variance of the individual record level 
such as sex of the fish. The genetic basis of the variabil-
ity of body size traits has not been explored in any spe-
cies, except in humans for height [32].

The main objective of our study was to investigate the 
potential for genetic improvement of uniformity of har-
vest weight and body size traits in the GIFT strain. For 
this purpose, we analyzed within-family variance of har-
vest weight, body length, depth, and width, by applying a 
DHGLM to individual trait values [33]. To quantify the 
genetic relationship between the level and the variance 
of these traits, we also estimated the genetic correlation 
between these two components.

Methods
Environment
We used data that were obtained from an experiment 
that was specifically designed to estimate indirect genetic 
effects (IGE) for growth rate in the GIFT strain [34]. This 
experiment was carried out between 2009 and 2012 at 
the Jitra Aquaculture Extension Centre of the Depart-
ment of Fisheries, which is managed by WorldFish and 
located at Kedah State of Malaysia. WorldFish complies 
with the Malaysian laws on animal experiments. During 
this experiment, four batches of fish were produced, i.e. 
one batch each year (batch named per year). However, for 
the last batch (2012), a high level of mortality occurred 
due to extreme weather conditions, which resulted in an 
insufficient number of records, and thus it was excluded 
from the analysis.

Experimental design
To produce families, the GIFT breeding program uses a 
nested-mating design, where one male is mated to two 
females. For this work, we used the same mating scheme 
to produce the experimental fish, and thus two full-sib 
families were obtained from each father. Each full-sib 
family contributed 80 offspring to the experiment. Fry 
that belonged to the same full-sib family were nursed 
together and separately from other families. During the 
grow-out phase, fish were kept in groups. Before plac-
ing each fish in a group, they were individually identi-
fied with a PIT (Passive Integrated Transporter) tag. 
Following the optimal design for the estimation of IGE 
[35], families were assigned to groups so that each group 
consisted of members of two distinct, unrelated families. 
Both families contributed eight randomly selected indi-
viduals to each group to form groups of 16 members. 
Therefore, each family of 80 offspring contributed to 10 
distinct groups (i.e. 80/10 members per group). Unique 
combinations of families in groups were created using a 
block design, with 11 families per block, where each fam-
ily was combined only once with the other ten families 
in the same block. Hence, there were 55 family combi-
nations i.e. groups, per block. Figure S1 (see Additional 
file 1: Figure S1) shows an example of the block design. 
If the number of available families for the last block was 
less than 11, an incomplete block was used with all the 
remaining families. An outline of the various steps that 
were carried out for each batch is in Fig. 1.

The groups were kept in net-cages that were placed in 
earthen ponds in rows and columns. For each batch, two 
ponds were available. Due to the small number of fish 
available for batch 2010, only one pond was used. The 
groups for each block were distributed randomly and as 
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evenly as possible over both ponds. Thus, the 55 groups 
of a block were split into 27 groups for pond 1, and 28 
groups for pond 2.

During the grow-out phase, fish were fed with commer-
cial dry pellets containing 32 % of protein; the amount of 
pellets (3 to 5 % of average live weight) and feeding fre-
quency (twice a day) were the same as for the GIFT selec-
tive breeding population. However, because the fish were 
kept in net-cages rather than in communal rearing, the 
feeding strategy differed from that in the standard GIFT 
program. Rather than spreading the food over the entire 
surface of a pond, it was placed in the corner of each 

net-cage so that the fish could express their competitive 
tendency (see Discussion). More details on the experi-
ment are in Khaw et  al. [12, 34]. The GIFT technology 
manual provides a description of key husbandry proce-
dures [36].

Records
Fish were harvested 5  to  8  months after the grow-out 
period, when the average weight ranged from 200 to 
250  g. At harvest, the following traits and parameters 
were recorded: live body weight (g), body measurements 
(length, depth, and width, in cm), tag number, sex, pond, 
and net-cage label. The age at harvest of each fish was 
computed from the recorded spawning and harvesting 
dates [34]. Over three batches, phenotypic observations 
on body weight and body measurements at harvest were 
available for 6330 fish from 493 groups.

Ideally, each group should contain 16 individuals at 
harvest. However, due to mortality, some groups con-
tained very few individuals, and a threshold was set for 
group and family size. Thus, groups that contained less 
than seven individuals in total or less than three fish per 
family were discarded, which reduced the number of 
groups to 446. With two families in each group, 892 fam-
ily-by-group combinations and 6090 individual records 
were available for each trait. Table 1 shows the number 
of observations at harvest (full dataset) and number of 
observations used in the analysis (edited or reduced data-
set). The pedigree consisted of 34,517 records that traced 
the GIFT population back seven generations.

Statistical analysis
The environmental component in the phenotypic variation 
of a trait can be measured either on the same individual for 
which repeated observations are available or on the indi-
viduals belonging to the same family [37]. In our dataset, 
body weight and body measurements were recorded at 
harvest. Hence, only one record for each trait was available 
for each individual, but eight observations were recorded 
per family per group. To analyze the genetic heterogeneity 
of the environmental variance, different approaches have 

Family 12

Female 1     Male    Female 12

Family 1

MATING AND 
REPRODUCTION

Nursing net-cage 1 Nursing net-cage 2NURSING 
OF FRY

Block A Block B

Group 1-X Group 12-Y

FORMATION OF 
GROUPS

TAGGING AND PLACING FRY INTO 
POND(S)

HARVESTING AND TRAIT RECORDING

GROW-OUT PHASE

Fig. 1  Outline of the experimental design for two paternal families. X 
represents any family from Block A, other than family 1; Y represents 
any family from Block B, other than family 12; an example of Block A is 
in Figure S1 (see Additional file 1: Figure S1)

Table 1  Number of  groups, families per  group, and  individuals at  harvest (C-complete dataset) and  after editing 
(R-reduced dataset)

Batch Families Groups Families per group Individuals

C R C R C R C R

2009 66 66 209 188 418 376 2565 2461

2010 33 31 45 37 90 74 509 464

2011 68 68 239 221 478 442 3256 3165

Total 167 165 493 446 986 892 6330 6090
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been proposed [37] and we chose a DHGLM that mod-
els the residual variance of individual observations on the 
exponential scale, and can be interpreted as a multiplica-
tive model [17]. On the level of the natural logarithm, the 
multiplicative model becomes additive.

Sire and dam, group, kin, and social maternal effect 
were included as random effects. A group effect was 
included to account for non-heritable indirect effects, 
which create a non-genetic covariance among individuals 
within the same group [38]. If this covariance is present 
but not accounted for, it can cause bias in the estimated 
genetic parameters [39]. According to the kin selection 
theory, relatives can cooperate with each other [40, 41], 
thus a non-genetic covariance between group mates 
belonging to the same family can arise. Therefore, we 
included a kin effect to account for this source of non-
genetic covariance i.e. between group mates of the same 
family compared to group mates of the other family 
within a group [34]. Finally, a social maternal effect was 
included that accounts for the non-genetic effect of the 
common maternal environment of one full-sib family on 
the performance of the other full-sib family in the group 
[12]. In other words, we fitted a non-genetic effect of the 
mother of a full-sib family on the trait values of the other 
full sib family kept in the same group. Hence, we termed 
this effect “social”, because it is expressed in the trait val-
ues of the social partners of the offspring of a mother, 
rather than in the offspring themselves.

Double hierarchical generalized linear models (DHGLM)
Lee and Nelder [42] developed a framework for the 
DHGLM, where level and residual variance of a trait 
can be modeled jointly with specified random effects. 
This approach has been applied in animal breeding by 
Rönnegård et  al. [33] who implemented the DHGLM 
in the statistical software SAS and ASReml 2.0 [33]. 
The DHGLM algorithm iterates between two sets 
of mixed model equations i.e. a linear mixed model 
for the phenotypic records and a generalized linear 
mixed model for the response variable φi. φi is defined 
as φi = E

(

ê2i /(1− hi)
)

, where ê2i  is the squared resid-
ual for the ith observation and hi is the diagonal ele-
ment of the hat matrix of y, corresponding to the same 
individual [33, 43]. As φ follows a χ2 distribution, 
ê2i /(1− hi) can be linearized using a log link function 
so that log(φ) = log

[

ê2i /(1− hi)
]

 [33]. Instead of using 
a log link function, log

[

ê2i /(1− hi)
]

 can be linearized 
using a first order Taylor-series expansion as shown by 
Felleki et al. [44], which results in the response variable 
ψi = log

(

σ̂
2
ei

)

+
({[

e2i /(1− hi)
]

− σ̂
2
ei

}

/σ̂2ei

)

 , where σ̂
2
ei

 
denotes the predicted residual variance for observation i, 
and ei is the residual for individual i. Due to linearization, 
a bivariate DHGLM can then be used:

where y is the vector of individual trait records (har-
vest weight, body length, depth, and width) and ψ is the 
vector of response variables for the variance part of the 
model, expressed per individual (ψi as defined above). b 
and bv are the vectors of fixed effects, while a and av are 
the vectors of additive genetic effects of the sire and dam 
of each individual, with 

where sire and dam variances are equal to a quarter of the 
additive genetic variance: σ2a(v) =

1
4σ

2
A(v)

, σ2A(v)
 denoting the 

ordinary additive genetic variance. Note that we assume 
equal additive genetic variances for the sire and dam, i.e. 
σ
2
sire(v)

= σ
2
dam(v)

= σ
2
a(v)

. g and gv are the vectors of random 

group effects, with 
(

g
gv

)

∼ N

(

0,

[

σ
2
g σg,gv

σg,gv
σ
2
gv

]

⊗ I

)

 ; k  

and kv are the vectors of random kin effects, with 
(

k
kv

)

∼ N

(

0,

[

σ
2
k σk,kv

σk,kv σ
2
kv

]

⊗ I

)

; m and mv are  

the vectors of social maternal effects, with 
(

m
mv

)

∼ N

(

0,

[

σ
2
m σm,mv

σm,mv σ
2
mv

]

⊗ I

)

; and e and 

ev are the vectors of random residuals that are 
assumed to be independent and normally distributed 
(

e
ev

)

∼ N

(

0,

[

W−1
σ
2
e 0

0 W−1
v σ

2
ev

]

⊗ I

)

 with scal-

ing variances σ2e and σ2ev. The expectations for the scaling 
variances σ2e and σ2ev are equal to 1, because W and Wv 
already contain the reciprocals of the estimated residual 
variances per record. The X(Xv), Z(Zv), V(Vv), S(Sv) 
and U(Uv) are known design matrices assigning obser-
vations to the level of fixed, sire and dam, group, kin, 
and social maternal effects for y(ψ), respectively. The 
weights, W = diag

(

ψ̂

)−1
 and Wv = diag((1− h)/2) , 

are, together with vector ψ, updated at each iteration 
until convergence [43]. The social maternal effect was 
excluded for body width because the model did not con-
verge, and for body length because it was not significant 
(

χ2
1DF = 2.66, p = 0.264

)

. The fixed effects included for 
trait level and the variance part of the model were interac-
tion of batch (2009, 2010, and 2011), sex (male and female), 
pond (1 and 2) and the linear covariate ‘age at harvest’.

[

y
ψ

]

=

[

X 0
0 XV

][

b
bv

]

+

[

ZPar 0
0 ZParv

][

a
av

]

+

[

V 0
0 Vv

][

g
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]

+

[

S 0
0 Sv
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k
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]

+

[

U 0
0 Uv

][

m
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]

+

[

e
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]

,

(

a
av

)
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(
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[

σ
2
a σa,av

σa,av σ
2
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]

⊗ A

)

,
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To facilitate interpretation in the Results section, the 
group effect for trait level is presented as g2 = σ̂

2
g/σ̂

2
P , 

where σ2P is the phenotypic variance, and the kin effect 
as k2 = σ̂

2
k/σ̂

2
P. Moreover, for the genetic estimates, the 

genetic coefficient of variation (GCV) for trait level and 
its residual variance (GCVVe) are provided. These are 
defined as, GCV = σA /µ, where σA is the genetic stand-
ard deviation in trait level while µ is the population mean 
level of the trait [45], and, GCVVe = σAV

/σ2E, where σAV
 

is the genetic standard deviation in the residual variance 
and σ2E is the mean residual variance from the additive 
model [37, 46]. When σ2AV

 is on the exponential scale, 
as is the case for the residual variance in our analysis, 
GCVVe is close to 

√

σ
2
AV

 [37, 46].

Results
Genetic parameters for trait levels
Estimated genetic parameters for levels of harvest 
weight, body length, depth, and width are in Table  2. 
The estimated heritability for individual harvest weight 
(estimated by using the average residual variance across 
all observations) was equal to 0.25 (0.04) and the same 
value was obtained with a univariate model assuming a 
homogeneous residual variance (results not shown). The 
log-likelihood ratio tests indicated that both group and 
kin effects were highly significant (p < 0.0001). The group 
effect explained 13 % of the phenotypic variance, which 
shows that individuals within the same group are more 
similar to each other than to members of other groups. 
The kin effect explained 10 % of the phenotypic variance, 

which indicates that individuals within the same family 
are more alike compared to individuals of the other fam-
ily in the group, in addition to their genetic similarity. We 
tested the model for harvest weight when group and kin 
effects were not included and found that removing one or 
both effects created an upward bias in the estimated vari-
ances for both the level and variance of the trait (results 
not shown). The social maternal effect was significant 
(p < 0.001) but small and explained 2 % of the phenotypic 
variance.

Heritabilities of harvest weight and body width were 
similar (0.25 ±  0.05), while heritabilities of body length 
and body depth were a little higher (~0.30 ±  0.05). The 
group effect explained ~15 % of the phenotypic variance 
for length and depth, and 27 % for width. The kin effect 
explained ~10 % of the phenotypic variance for all three 
body size traits.

Genetic parameters for the variance of traits
Estimated genetic parameters for the variance of har-
vest weight, body length, depth, and width are in 
Table 3. For all traits, the contribution of genetic effects 
to their variance was highly significant (p  <  0.0001). 
Estimated GCVVe for harvest weight was high and 
equal to 0.58, whereas for body size traits, GCVVe were 
lower i.e. 0.39, 0.42, and 0.45 for length, depth and 
width, respectively. These estimates indicate that there 
is substantial genetic variation in the residual variance 
compared to the average value of the residual variance, 
for all analyzed traits.

Genetic correlations between level and variance of traits
Estimated genetic correlations between level and vari-
ance for harvest weight and body size traits are in Table 4. 
The genetic correlation between level and variance for 
harvest weight was high and positive (0.60 ± 0.09), which 

Table 2  Genetic parameters for  level of  harvest weight, 
length, depth, and width

Standard errors are indicated between brackets
a  Additive genetic variance was calculated as four times the sire-dam variance
b  Group effect, calculated as g2 = σ

2
g/σ

2
P

c  Kin effect, calculated as k2 = σ
2
k/σ

2
P

d  Social maternal effect, calculated as m2
= σ

2
m/σ

2
P

e  Genetic coefficient of variation

Parameter Harvest weight Length Depth Width

a σ2A 573.46 (115.80) 0.732 (0.136) 0.202 (0.037) 0.034 (0.007)

σ
2
e

1426.3 (27.99) 1.443 (0.028) 0.365 (0.007) 0.067 (0.001)

σ
2
g

300.26 (42.81) 0.354 (0.047) 0.104 (0.012) 0.037 (0.004)

σ
2
k

240.29 (35.45) 0.235 (0.035) 0.047 (0.008) 0.013 (0.002)

σ
2
m

43.64 (20.83) – 0.013 (0.006) –

σ
2
P

2297.2 (70.78) 2.418 (0.081) 0.631 (0.022) 0.136 (0.005)

h2 0.25 (0.04) 0.30 (0.05) 0.32 (0.05) 0.25 (0.05)

b g2 0.13 (0.02) 0.15 (0.02) 0.16 (0.02) 0.27 (0.02)

c k2 0.10 (0.02) 0.10 (0.01) 0.08 (0.01) 0.10 (0.01)

d m2 0.02 (0.01) – 0.02 (0.01) –
e GCV 0.14 0.05 0.06 0.06

Table 3  Genetic parameters for  the variance of  harvest 
weight, length, depth, and width

Standard errors are indicated between brackets
a  Additive genetic variance was calculated as four times the sire-dam variance
b  Group variance
c  Kin variance
d  Social maternal variance
e  Genetic coefficient of variation at variance level

Parameter Harvest weight Length Depth Width

a σ2A 0.343 (0.068) 0.156 (0.041) 0.184 (0.042) 0.203 (0.048)

σ
2
e

1.747 (0.034) 1.924 (0.038) 1.862 (0.036) 1.696 (0.033)
b σ2g 0.040 (0.021) 0.031 (0.021) 0.031 (0.018) 0.073 (0.020)
c σ2k 0.078 (0.027) 0.098 (0.029) 0.022 (0.023) 0.062 (0.023)
d σ2m 0.009 (0.009) – 0.023 (0.011) –
e GCVVe 0.58 0.39 0.42 0.45
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implies that selection for increased harvest weight will 
also yield more variation in the level of this trait. For 
body size traits, genetic correlations between level and 
variance were lower than for harvest weight, and were 
not significantly different from 0 for length and width, 
but moderate and positive for depth (0.37 ± 0.13).

Discussion
In this study, we used a DHGLM to estimate genetic vari-
ation in uniformity of harvest weight and three body size 
traits, i.e. length, depth, and width. Our results showed 
substantial genetic variation in uniformity of all analyzed 
traits, with GCVVe ranging from 39 to 58 %, while GCV 
for trait levels ranged from 5 to 15  %. A strong genetic 
correlation of 0.60 was found between trait level and var-
iance, which suggests that selection for increased body 
weight at harvest will also result in more variation in the 
level of this trait.

Heritability of individual harvest weight and body size 
traits
Estimated heritability for individual harvest weight was 
moderate (0.25 ± 0.04), which is similar to results from 
previous studies on Nile tilapia [2, 47, 48]. To date, the 
GIFT strain has undergone 14 generations of selection 
for harvest weight. Our findings, together with the small 
average inbreeding coefficient of 3.1  % in the analyzed 
GIFT population, suggest that there is still a considerable 
amount of genetic diversity available for further selec-
tion, which is also in agreement with the positive genetic 
trend observed in the GIFT strain [3].

Heritabilities for individual body size traits were also 
moderate (0.25  to 0.32), which provide opportunities to 
improve body size traits in Nile tilapia. Body size traits 
could become traits of interest in future breeding pro-
grams since selection for heavier fish may lead to body 
shapes that deviate from the natural shape, the latter 
being favored by consumers [13, 49, 50].

Genetic variance in uniformity of harvest weight
Variance components that are estimated using the 
exponential model, as in this study, are independent of 
the scale of the trait, and thus, are comparable across 
traits and species [24, 30]. We found a substantial addi-
tive genetic variance for uniformity of harvest weight 

(0.34 ± 0.07; Table 3), which is larger than that in a simi-
lar study on Atlantic salmon by Sonesson et al. [30], who 
reported an additive genetic variance in the residual vari-
ance of 0.17 on the exponential scale. Our estimates are 
also higher than those reported for livestock traits [23, 
24, 37, 51, 52]. These findings suggest that the observed 
phenotypic variability of harvest weight in the GIFT 
strain has a substantial genetic component.

Regardless of the underlying model, comparison of 
additive genetic parameters for uniformity across differ-
ent studies can also be done by using the genetic coeffi-
cient of variation for residual variance (GCVVe) [37, 46]. 
GCVVe describes the change in residual variance when a 
genetic standard deviation of 1 is achieved in response to 
selection, relative to the mean of the residual variance. In 
our study, GCVVe for harvest weight was large i.e. 0.58. 
The proportional change in phenotypic variance can be 
calculated as GCVVe

(

σ
2
E/σ

2
P

)

, which in the case of harvest 
weight would be equal to 0.36. In the literature, GCVVe 
for variability of traits in livestock and laboratory ani-
mals usually ranges from 0.2 to 0.6 [37]. For uniformity 
of body weight in rainbow trout, GCVVe of 0.37 and ~0.2 
were reported by Janhunen et al. [29] and Sae-Lim et al. 
[31], respectively, which are lower than the values found 
in our study. The estimated GCVVe for harvest weight 
suggests that there is sufficient genetic variation to allow 
a substantial change in the residual variance of this trait 
compared to its average value within a single genera-
tion of selection, which would be much larger than that 
for harvest weight level (Table 2). However, it should be 
noted that the accuracy of selection for uniformity tends 
to be lower than for trait levels [19], and that expressions 
for response to selection on environmental variability do 
not depend on GCVVe only [7, 17, 27, 46].

Effect of data distribution
The estimated level and variance for harvest weight could 
be influenced by the non-normal distribution of harvest 
weight. In data on aquaculture species, skewness is not 
unusual [6, 53]. A skewed distribution can result from 
inter-individual competition and subsequent feeding hier-
archy, with a few individuals dominating the rest of the 
group. However, in many statistical inferences, normality 
is assumed and this is especially important in the analy-
sis of the genetic heterogeneity of environmental variance 
[54]. To test whether genetic variation in residual vari-
ance is merely an artifact of a non-normal distribution, we 
applied a Box-Cox transformation to harvest weight. The 
transformation resulted in a normally distributed trait, 
which was then analyzed with the DHGLM. Results of 
the analysis (see Additional file 2: Table S1) showed that 
this transformation had only a minor effect on the esti-
mated genetic parameters for trait level, but decreased 

Table 4  Genetic correlations between  level and  the vari-
ance for harvest weight, length, depth, and width

Standard errors are indicated between brackets

Harvest weight Length Depth Width

0.60 (0.09) 0.11 (0.16) 0.37 (0.13) 0.20 (0.15)
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the variance of the residual variance. Similar results were 
found in other studies that analyzed transformed traits 
[30, 31, 54]. Although the additive genetic variance of 
uniformity decreased somewhat after the Box–Cox trans-
formation, this difference was not significant (p =  0.22). 
Thus, our results indicate that there is genetic variation 
in uniformity of harvest weight, irrespective of the scale 
of measurement of the trait. Unlike harvest weight, body 
length, depth, and width were normally distributed.

Genetic correlation between level and variance of harvest 
weight and body size traits
Our results imply that the observed variation in harvest 
weight in the GIFT strain could be reduced by selec-
tive breeding. However, selection for more uniform 
fish may result in a trade-off on improvement of har-
vest weight. The genetic correlation between level and 
variance of harvest weight is high and positive, 0.60 
(Table  4), which means that single-trait selection for 
heavier fish will increase the variation in harvest weight 
among individuals. Similar correlations were obtained 
by Sae-Lim et  al. [31]. Simultaneous improvement of 
harvest weight and its uniformity will therefore require 
index selection.

To maximize profit, not only uniformity of weight but 
also uniformity of size, may play an important role in 
fish farming, especially for markets where fish are sold 
as whole. The magnitudes of GCV for uniformity of body 
size traits and harvest weight were similar but improve-
ment of body size traits based on the estimated correla-
tions (Table 4) is expected to have a limited effect on the 
level of these traits.

Factors affecting magnitude of variability and genetic 
variance in variability
In our analyses we used a sire and dam model, which fits 
the additive genetic mid-parent mean, while the Mende-
lian sampling deviation is part of the residual. This can 
potentially inflate the size of the estimated genetic vari-
ation in residual variance in case of heterogeneous Men-
delian sampling variation, which is then confounded with 
the genetic part of the residual variance [30]. A Mende-
lian sampling variance that is heterogeneous among fam-
ilies can result from differential inbreeding coefficients of 
parents, or from the presence of a major gene that is seg-
regating in some families but not in others [20].

In aquaculture species, maternal common environmen-
tal effects can have an important role in explaining dif-
ferences among families. These effects can be included 
in the estimation of genetic parameters as non-genetic 
effects that account for covariances between full-sibs due 
to a shared environment. In this study, maternal common 

environmental effects were excluded from the models 
because of convergence problems, which arose when those 
effects were included. The same issue was observed in 
other studies that used the same dataset and for which the 
results showed confounding of maternal common environ-
mental effects and direct genetic effects [12, 34]. The main 
difficulty that occurs when disentangling the two effects is 
due to the mating of one male with two females. Moreo-
ver, in our experiment, mating was often partly unsuccess-
ful and resulted in 1 ×  1 mating instead. However, even 
a perfect 2 × 2 mating design results in limited power to 
separate genetic and maternal common environmental 
effects, at least at the variance level, as reported by Sones-
son et al. [30]. Previous studies on a larger GIFT popula-
tion for which 1 × 2 mating was more successful, detected 
significant maternal common environmental effects (0.34) 
for individual harvest weight [2]. Thus, our estimates of the 
genetic variance of uniformity may be inflated by the ina-
bility to fit maternal common environmental effects.

A recent study on birth weight of mice treated environ-
mental variability as a maternal trait, and found a positive 
response to selection [55]. In an earlier study, the same 
authors found evidence that environmental variability of 
birth weight was more likely to be a maternal genetic trait 
than a trait due to direct genetic effects [4]. In the study 
by Rutten et al. [56], the variance of body weight due to 
common environmental effects, which include maternal 
genetic and non-additive genetic effects, decreased with 
age. Since in our study, traits were measured at harvest, 
maternal genetic or common environmental effects prob-
ably explain only a small proportion of the heterogeneity 
of residual variance.

In Table S2 (see Additional file  3: Table S2), we pre-
sent estimates of the fixed effects included in the model. 
All fixed effects had a significant impact on the magni-
tude of the observed variability. The effect of sex was 
especially large with males showing ~1.3 times greater 
residual variance compared to females. This finding may 
be related to the competitive behavior expressed pri-
marily by males. Mulder et al. [19] showed that the esti-
mated genetic correlation between residual variances for 
body weight of both sexes was only 0.11, which suggests 
that they are different traits. A similar analysis could be 
conducted on our data, to investigate whether the large 
effect of sex is associated with a genetic correlation for 
variability between sexes that is less than 1. Ponzoni et al. 
[2] recorded the CV of body weight in the GIFT strain 
across eight generations and observed that good breed-
ing management contributed to reduce the CV, although 
its average value remained at around 40 %. Thus, reduc-
ing uniformity will require both genetic and management 
interventions.
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CV for harvest weight
In our experiment, the feeding strategy differed from 
that in the ordinary GIFT breeding program. Instead of 
spreading food on the surface of the pond as in the GIFT 
breeding population, we placed it in the corner of the net-
cages so that the fish showed their competitive tendency. 
The CV for harvest weight in our study (35 %) was lower 
than the values found in previous studies on the GIFT 
strain where fish were communally reared (48  to  59  %) 
[10, 50]. Thus, there is no evidence that the level of com-
petition between individuals was higher in our conditions 
than in the communal rearing conditions of these stud-
ies. In communal rearing, the feed is not spread over the 
entire pond’s surface because auto-feeders are not avail-
able, which may cause some competition. In addition, the 
fish in our experiment were kept in small net-cages and 
stocked at low density, while in commercial ponds all fish 
are kept together at high density. Because of the differ-
ences in rearing conditions, the question of whether our 
results can be extended to commercial situations remains 
open. A selection experiment, in which parents are kept 
in many small groups and selected for uniformity while 
offspring are evaluated under commercial conditions, 
would constitute the ideal proof.

Future prospects
Although studies on the genetic heterogeneity of envi-
ronmental variance date as far back as 1942 [57], selec-
tion experiments to improve uniformity in livestock are 
scarce. Still, some experiments [58–61] that were based 
on divergent selection for phenotypic variance, provided 
evidence for a genetic component in the phenotypic vari-
ability and suggested the possibility that this variability 
could be reduced by selective breeding. To our knowl-
edge, selection for uniformity has never been performed 
in aquaculture species. Nevertheless, the high GCVVe 
found in our and other studies on aquaculture spe-
cies suggest that aquaculture populations are suitable to 
validate the estimated genetic parameters by a selection 
experiment. Selection for uniformity of body weight or 
size could lead to increased profit by producing more fish 
in the size range that is favored by the consumers. More-
over, from the point of view of animal welfare, uniform-
ity of fish body weight and size could reduce competition, 
and thus possible stress, injuries, and even mortality.

We studied the genetic variance of the residual vari-
ability. However, the total phenotypic variability also 
depends on other factors [62], as shown by the signifi-
cant fixed effects on variability, for example sex effect 
(see above). Hence, decreasing the total phenotypic 
variability even more would require reducing the mag-
nitude of these fixed effects. When the genetic correla-
tion between growth rate in males and females differs 

from 1, it is possible, in principle, to remove the vari-
ability due to a difference in mean body weight between 
sexes. The magnitude of environmental effects, such 
as group and batch effects, is related to environmental 
sensitivity (and thus to genotype by environment inter-
actions). Evaluating the prospects of reducing these 
components by genetic selection will require further 
research.

An interesting property of the specific design of our 
experiment is that it allows the simultaneous study of 
uniformity and social effects such as group and kin 
effects in our study and indirect genetic effects, which 
were analyzed in other studies on the same data [12, 34]. 
However, the experimental setting and feeding strategy 
that we applied differed from those in a commercial set-
ting. Thus, genotype by environment interactions may 
be present and our results may not represent uniform-
ity in the case of commercial tilapia farms. The DHGLM 
approach could be used to test whether the genetic back-
ground of uniformity differs between both environments. 
Results from such a study would be a useful addition to 
our findings.

Conclusions
Our study revealed substantial genetic variation in uni-
formity of harvest weight and body size traits, which 
opens promising prospects for the genetic improvement 
of uniformity by selective breeding of the GIFT strain. 
The genetic correlation between level and variance of 
harvest weight was high and positive, which indicates 
that selection for heavier fish may also result in more var-
iation in harvest weight. Simultaneous improvement of 
harvest weight and its uniformity will thus require index 
selection.
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