Notes on the Occurrence of *Amphiprion* (Perciformes: Pomacentridae) in Peninsular Malaysia

S.S. PALANIAPPAN, M.N. SITI AZIZAH and Y. YUSUF

World Fish Center
Jalan Batu Maung
Bayang Lepas, 11960 Penang
Malaysia

Abstract

Amphiprion sp represent the largest complex of anemonefish with approximately 25 species ranging all over the Indo-West Pacific region. It often varies morphologically due to ontogenic, geographic, melanistic, hybridization, sexual and random differentiation and is very popular among aquarists. These observations were carried out to elucidate *Amphiprion* distribution in Peninsular Malaysia. Eight species were observed and their respective symbiont hosts were recorded. Recent surveys show that *Amphiprion* populations previously recorded in Tanjung Tuan (Cape Rochado), Melaka have now perished. Rapid uncontrolled development in the Straits of Melaka has caused the corals and many organisms dependent on reefs to perish. It is hoped that current studies would contribute towards the preservation of the anemonefishes which are often sought after for the aquarium trade.

Introduction

Amphiprion spp. are members of the family Pomacentridae and they represent the largest genus of anemonefish complex with approximately 25 species (Fautin and Allen, 1992). Sin et al (1994) in their paper identified five species of *Amphiprion* from Malaysian waters. De Silva et al.(1982) also recorded five species from the Payar group of islands. Its common name ‘clownfish’ was derived from the variability in the striking ornamental coloration which, although reliant upon ingested carotenoids (Tanaka et al., 1992), shows seven types of possible variation: ontogenic, geographical, melanistic, hybridization, sexual, behavioural and a random genetic variation (Table 1) (Fautin and Allen, 1992).

Distribution of the *Amphiprion* is reliant upon the distribution of the tropical anemone host species (Allen, 1980) which are themselves constrained by water temperature (Dunn, 1981). Range for both is extended out
of the tropical belt by the warm water currents allowing colonization from
the Caroline Islands westwards to the Red Sea (within the vast Indo-West
Pacific region).

The faunistic center of Amphiprion as well as for most marine taxa is
within the Indo-Malayan region which is classically believed to be the center
of fish speciation (Ekman, 1953). The paleogeography of the Indo-Malayan
region has changed dramatically during the Quartenery period. As sea levels
associated with glaciation fell to 200m below their present levels, much of
the Sunda shelves would have been terrestrial. Following the formation of a
large number of continentally fragmented or volcanic islands, ideal condi-
tions for shallow water anemones and therefore anemonefishes were estab-
lished (Woodlands, 1990).

The pelagic larval phase for anemonefishes is short, ranging from eight
to 12 days. Planktonic larval duration is said to play a major role in deter-
maining distribution and abundance in reef fish populations (Sale et al., 1984).
However despite such a short larval duration, anemonefishes range over a
wide but more importantly isolated range, unbridgeable by temporal plank-
tonic dispersal.

A mutualistic reliance is induced on a colentrate host in line with the
obligate symbiotic nature of Amphiprion. Specificity to a host anemone is con-
trolled by three factors; an innate preference, competitive superiority and
chance (Fautin and Allen, 1992). Increasing geographical range of an
Amphiprion decreases specificity on a host anemone species.

Like many other reef fishes, Amphiprion undergoes sex reversal, al-
though it is the less encountered form of protandrous hermaphrodite (male
to female). The largest and socially dominant individual is usually a female
and forms a monogamous relationship with a male (Nelson et al., 2000).
However any change of hierarchy would cause functional testes to be devel-
oped (Fautin and Allen, 1992). Spawning occurs throughout the year.

Amphiprion are economically valuable in the aquarium trade. These
brightly colored anemonefishes are very popular among aquarists. A single
fish can fetch a price between US$ 1.31 to US$ 2.63 with the host anemone
costing up to US$ 7.89 in Malaysia. The exact location of collection points as
well as the extent of collection rates are not clear. Most marine aquarium

<table>
<thead>
<tr>
<th>Variation</th>
<th>Cause/Effect</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontogenetic</td>
<td>Gradual change from transparent juvenile to coloured adult morph</td>
<td>Most</td>
</tr>
<tr>
<td>Geographic</td>
<td>Regional variation in isolated populations</td>
<td>A.clarkii, A.ocellaris</td>
</tr>
<tr>
<td>Ecological 1</td>
<td>Reduced/increased iridescence in response to environment (turbidity etc.). Expansion or contraction of special pigment cells.</td>
<td>Few</td>
</tr>
<tr>
<td>Ecological 2</td>
<td>Response to host anemone selection. 'Bright' or 'melanie' phase</td>
<td>A.clarkii, A.ocellaris, A.percula</td>
</tr>
<tr>
<td>Sexual</td>
<td>Slight colour changes usually in caudal fin</td>
<td>Few: A. clarkii, A.perideraion</td>
</tr>
<tr>
<td>Behavioural</td>
<td>Reproductive or antagonistic signaling</td>
<td>Few: P.biocutatus</td>
</tr>
</tbody>
</table>
traders claim that these fish are from foreign waters. However, the rapid depletion of anemonefishes that were once abundant in Tanjung Tuan (Cape Rochado), off the Straits of Malacca, indicate that severe harvesting without time for recovery has almost wiped out the population there (pers. obs).

Sin et al (1994) in their paper stated the fact that studies on Malaysian pomacentrids is lacking is an unfortunate fact. This study aims to identify the anemonefishes of Peninsular Malaysia as well as determine the distribution patterns. We hope to record the diversity of *Amphiprion* in each chosen location transcending the waters of Peninsular Malaysia.

Materials and Methods

Field observations were carried out in four marine parks: Payar Island, Tinggi Island, Tioman Island and Redang Island (Fig 1). Tanjung Tuan (Cape Rochado) in Melaka was excluded after an initial survey failed to show the presence of any anemonefish.

Visual census was carried out at every possible location within the waters of the islands at most substrate types such as coral cover, rubble cover and sandy bottoms using underwater photography and SCUBA diving. *Amphiprion* were identified using keys by Fautin and Allen (1992) and Lieske and Meyers (1994). The fish were photographed for confirmation of species.

Results and Discussion

Eight species of *Amphiprion* were observed cumulatively in the four locations with their respective symbiont hosts (Table 1, 2 and 3). This is more than what was previously recorded by Sin et al (1994). The additional species previously undocumented were *A. alkallapisos, A. sandaracinos, A. melanopus* and *A. ephippium*.

Of the marine parks, Tioman Island led the list with the most number of species, six. This was followed by Tinggi island and Redang with five species each. Payar island had the lowest number with four species.

A. clarkii, known as Clark’s anemonefish, was the most widely distributed species over all the four locations which is agreeable with the fact that it is the most widely distributed species around the world and it is the species that is found in symbiosis with many host species (Fautin and
Allen, 1992). Of the ten host species, in Malaysian waters, A. clarkii was observed in symbiosis with *Heteractis magnifica*, *H. crispa*, *Stichodactyla mertensii* and *Entacmea quadricolor* (Table 2).

A. clarkii also shows morphological variation due to ontogenic, geographic, sexual factors as well as in response to host anemones (Tanaka et al., 1992). In Payar Island, only the black and yellow variant was observed in all different species of anemones.

A. ocellaris, commonly known as false clown anemonefish, was also found in all locations. It shares an allopatric distribution with *A. percula*, a very similar species except for the dorsal spine count and middle bar length. *A. ocellaris* has 11 or ten dorsal spines as opposed to *A. percula* that has nine dorsal spines and a more protruding middle bar. *A. ocellaris* is found in symbiosis with three different species of anemones but in all locations it was only found with *H. magnifica* which was most abundant (Table 2).

This species is known to show ontogenic, geographic variation as well as morphological variation due to responses to host anemone as well as random

<table>
<thead>
<tr>
<th>Amphiprion sp.</th>
<th>Anemone species in this study</th>
<th>Anemone species in previous studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. alkallapisos</td>
<td>H. magnifica</td>
<td>H. magnifica and S. mertensii</td>
</tr>
<tr>
<td>A. clarkii</td>
<td>H. magnifica, H. crispa, Entacmea quadricolor and Stichodactyla mertensii</td>
<td>Crytodorum adhaesivum, E. quadricolor, H. aurora, H. crispa, H. magnifica, H. malu, Macrodactyla doreensis, Stichodactyla mertensii, S. haddoni and S. gigantea</td>
</tr>
<tr>
<td>A. ephippium</td>
<td>H. crispa</td>
<td>H. crispa and E. quadricolor</td>
</tr>
<tr>
<td>A. frenatus</td>
<td>E. quadricolor</td>
<td>E. quadricolor, occasionally H. magnifica rarely H. crispa</td>
</tr>
<tr>
<td>A. melanopus</td>
<td>E. quadricolor</td>
<td>H. magnifica, S. gigantea and S. mertensii</td>
</tr>
<tr>
<td>A. ocellaris</td>
<td>H. magnifica and S. mertensii</td>
<td>H. magnifica, H. crispa, S. gigantea and S. mertensii</td>
</tr>
<tr>
<td>A. perideraion</td>
<td>H. magnifica</td>
<td>H. magnifica, H. crispa, S. gigantea and S. mertensii</td>
</tr>
<tr>
<td>A. sandaracinos</td>
<td>H. crispa</td>
<td>H. crispa and S. mertensii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.Payar</td>
<td>P.Tinggi</td>
</tr>
<tr>
<td>A. alkallapisos (Bleeker, 1853)</td>
<td>+</td>
</tr>
<tr>
<td>A. clarkii (Bennett, 1830)</td>
<td>+</td>
</tr>
<tr>
<td>A. ephippium (Bloch, 1790)</td>
<td>+</td>
</tr>
<tr>
<td>A. frenatus (Brevort, 1856)</td>
<td>-</td>
</tr>
<tr>
<td>A. melanopus (Bleeker, 1852)</td>
<td>-</td>
</tr>
<tr>
<td>A. ocellaris (Cuvier, 1830)</td>
<td>+</td>
</tr>
<tr>
<td>A. perideraion (Bleeker, 1855)</td>
<td>-</td>
</tr>
<tr>
<td>A. sandaracinos (Allen, 1972)</td>
<td>-</td>
</tr>
<tr>
<td>Total number</td>
<td>4</td>
</tr>
</tbody>
</table>

PDF created with pdfFactory Pro trial version www.pdffactory.com
Variation (Table 1). Variations were observed in the width of the middle bar of the fish in most locations. In addition, melanistic tendencies were observed in samples from Payar island as opposed to other locations.

A. alkallapisos is a species abundant in all locations except Pulau Redang. Commonly known as skunk anemonefish, it is symbiotic with two anemone species. However in this study it was observed to be in symbiosis with only *H. magnifica* (Table 2). This species is often misidentified as *A. sandaracinos* or *A. perideraion*. This could be due to the fact that the body coloration of these species are very similar and only distinguishable upon closer inspection.

A. sandaracinos, commonly known as orange anemonefish was only found in symbiosis with *H. crispa*. Generally it is only found with *H. crispa* or *S. mertensii* (Table 2).

A. perideraion or pink anemonefish is usually found with *H. magnifica* but sometimes also found with *H. crispa*. It normally shows slight color changes in caudal fin due to sexual variation.

A. frenatus, commonly known as tomato anemonefish, was observed in all locations except Payar island although Lulofs (1977) had observed this species in the Payar group of islands from 1965 to 1970 and then noticed the disappearance of the species in 1975. This species is only found with *E. quadricolor* and this could explain its absence from Payar as this species of anemone was not observed as well (Table 2). *A. frenatus* is often difficult to differentiate from *A. melanopus*.

A. melanopus or red and black anemonefish was only located in Redang island. It seldom shows melanistic variation and is usually found with *E. quadricolor* and occasionally with *H. crispa* but rarely with *H. magnifica* (Table 2). This could also explain its absence from Pulau Payar as *H. magnifica* is the most abundant anemone species. However the report by De Silva et al (1982) and Rashid (1980) recorded this species in the Payar island reef system. The lack of *E. quadricolor* from these areas presently could explain the disappearance of the fish as well.

A. ephippium, the red saddleback anemonefish, was observed in symbiosis with a *H. crispa* anemone only in Pulau Payar. It has been known to occupy *E. quadricolor* elsewhere (Table 2) and is often misidentified as *A. melanopus* or *A. frenatus* due to morphological similarities.

Conclusion

The irregularities in the distribution patterns as well as the differences in species diversity denotes that more than paleogeographic history plays a role in species distribution. The ocean currents are a major factor in the inter-connectivity of marine areas and aid larval dispersion (Barber et al, 2000). The lack of species diversity in this area has to be examined not only as an individual factor but to check for inter-connectivity. For instance in the case *Amphiprion*, the fish is dependent on host anemones. Hence the lack of host species also denotes the immediate lack of the symbiont.
The commercial importance of this fish is well established and hence necessary measures to conserve have to be taken. Special management measures have to be taken to ensure that these *Amphiprion* are preserved instead of being totally eliminated due to thriving fishing for aquarium trade. An example has already been sighted in Tanjung Tuan (Cape Rochado), off Melaka, which was once a snorkeller’s haven. Now due to various factors, the genus has been wiped out from the area.

This study will be furthered to include a wider range of area and also other commercially important species in coral reefs for a more comprehensive understanding of reef fish and its association with other organisms for its sustainability.

Acknowledgements

Our appreciation to the Marine Parks of Malaysia and the Fisheries Department of Malaysia.

References

Manuscript received 2 May 2001 ; Accepted 21 April 2003