SH 206 P26L56 1996

#291

Testing the Use of Marine Protected Areas to Restore and Manage Tropical Multispecies Invertebrate Fisheries at the Arnavon Islands, Solomon Islands

ABUNDANCE AND SIZE FREQUENCY DISTRIBUTIONS OF INVERTEBRATES, AND THE NATURE OF HABITATS, PRIOR TO DECLARATION OF THE MARINE CONSERVATION AREA

APRIL, 1996

M.P. Lincoln Smith1 and J.D. Bell2

¹ The Ecology Lab Pty Ltd 25/28-34 Roseberry Street Balgowlah, New South Wales, Australia

² ICLARM Coastal Aquaculture Centre Honiara, Solomon Islands WHE RESMITH MEMORIAL LIBRARY &

13

From 00G

C	0	N	r	F	NT	CC
				2.0		

ENTERED IN MASA

SUMMARY	V
1. INTRODUCTION	. 1
2.1 Pilot Investigations 2.2 Study Sites and Survey Times 2.3 Survey Procedures 2.3.1 Invertebrates in the Shallow Habitat 2.3.2 Invertebrates in the Deep Habitat 2.3.3 Habitat Characteristics 2.4 Statistical Analysis of Data 2.4.1 Abundance of Invertebrates 2.4.2 Size-frequency Distributions 2.4.3 Habitat Characteristics	. 5 . 6 . 6 . 8 . 8 . 8
3.1 Invertebrates in the Shallow Habitat 3.1.1 Abundance of Invertebrates 3.1.2 Size-frequency Distributions 3.1.3 Habitat Characteristics 3.2 Invertebrates in the Deep Habitat 3.2.1 Abundance of Invertebrates 3.2.2 Size-frequency Distributions 3.2.3 Habitat Characteristics	10 10 11 12 13 13 14
4. DISCUSSION 4.1 Assessment of Stocks within the Study Region Compared to Studies in other Regions 4.2 Patterns of Variability Observed in Exploited Invertebrates and Implications for Monitoring the Success of the MCA 4.3 Potential Consequences of Variation in Habitat Characteristics for the Study 4.4 Recommendations and Conclusions	15 16 17
6. ACKNOWLEDGMENTS	19
7. REFERENCES	19
TABLES	
FIGURES	
APPENDICES	

SH 206 P26L56 1996 APR 28 1999

14693

TABLES

- Table 1. Study design used for comparing commercially valuable invertebrates among Groups, Islands and Sites over three Surveys prior to declaration of the Marine Conservation Area (MCA) at the Arnavon Islands, Solomon Islands.
- Table 2. Summary of data on abundance of invertebrates recorded in the shallow habitat within each Group over three Surveys prior to declaration of the MCA.
- Table 3. Summary of results of ANOVAs comparing invertebrates recorded in the shallow habitat among Groups, Islands and Sites over three Surveys prior to declaration of the MCA.
- Table 4. Summary of length frequency data on invertebrates measured in the shallow habitat.
- Table 5. Mean proportion (n = 32) and Standard error (SE) of habitat characteristics within the shallow habitat at each study Group.
- Table 6. Results of two-way ANOSIM comparing characteristics of the shallow habitat among Groups.
- Table 7. Rank contribution of characteristics of the shallow habitat as determined by SIMPER analysis.
- Table 8. Summary of data on abundance of invertebrates recorded in the deep habitat within each Group over three Surveys prior to declaration of the MCA.
- Table 9. Summary of results of ANOVAs comparing invertebrates recorded in the deep habitat among Groups, Islands and Sites over three Surveys prior to declaration of the MCA.
- Table 10. Summary of length frequency data on invertebrates measured in the deep habitat.
- Table 11. Mean proportion (n = 32) and Standard error (SE) of habitat characteristics within the deep habitat at each study Group.
- Table 12. Comparison of densities of exploited invertebrates recorded during the present study to estimates made on other Pacific Islands.
- Table 13. Study design proposed for comparing commercially valuable invertebrates among Groups, Islands and Sites over six Surveys, three each done before and after the declaration of the MCA.

FIGURES

- Figure 1. The study area and sampling sites on following pages. Map I = Waghena Group and inset of Solomon Islands, showing approximate position of Groups (I IV) within the study region. Map II = Arnavon Islands Group; Map III = Ysabel Group; Map IV = Suavanao Group.
- Figure 2. Mean number (\pm 1 S.E, n=6) of invertebrate species for each of four Sites within two Islands and four Groups within the shallow habitat.
- Figure 3. Mean abundance (\pm 1 S.E, n = 6) of all sea cucumbers recorded at each of four Sites

within two Islands and four Groups within the shallow habitat.

- Figure 4. Mean abundance (± 1 S.E, n = 6) of all giant clams recorded at each of four Sites within two Islands and four Groups within the shallow habitat.
- Figure 5. Mean abundance (\pm 1 S.E, n = 6) of *Tridacna maxima* recorded at each of four Sites within two Islands and four Groups within the shallow habitat.
- Figure 6. Mean abundance (± 1 S.E, n = 6) of *Tridacna derasa* recorded at each of four Sites within two Islands and four Groups within the shallow habitat.
- Figure 7. Mean abundance (± 1 S.E, n = 6) of *Tridacna crocea* recorded at each of four Sites within two Islands and four Groups within the shallow habitat.
- Figure 8. Mean number (\pm 1 S.E) of two species of giant clams from the shallow habitat for the MCA (n = 48) and reference groups (n = 144) for Surveys 1 3.
- Figure 9. Mean abundance (\pm 1 S.E, n = 6) of Hippopus hippopus recorded at each of four Sites within two Islands and four Groups within the shallow habitat.
- Figure 10. Mean abundance (\pm 1 S.E, n=6) of *Trochus niloticus* recorded at each of four Sites within two Islands and four Groups within the shallow habitat.
- Figure 11. Mean abundance (\pm 1 S.E, n = 6) of *Holothuria atra* recorded at each of four Sites within two Islands and four Groups within the shallow habitat.
- Figure 12. Length-frequency distributions of *Tridacna maxima* from the shallow habitat compared among Groups (data for Surveys, Islands and Sites pooled).
- Figure 13. Length-frequency distributions of *Tridacna derasa* from the shallow habitat compared among Groups (data for Surveys, Islands and Sites pooled).
- Figure 14. Length-frequency distributions of *Tridacna crocea* from the shallow habitat compared among Groups (data for Surveys, Islands and Sites pooled).
- Figure 15. Length-frequency distributions of *Trochus niloticus* from the shallow habitat compared among Groups (data for Surveys, Islands and Sites pooled).
- Figure 16. Three-dimensional MDS plot of habitat characteristics (% cover) among all Sites and Groups sampled in the shallow habitat (n = 32).
- Figure 17. Mean number (\pm 1 S.E, n = 6) of species of sea cucumbers for each of four Sites within two Islands and four Groups within the deep habitat.
- Figure 18. Mean number (\pm 1 S.E) of species of sea cucumbers from the deep habitat for the MCA (n = 48) and the reference Groups (n = 144) for Surveys 1 3.
- Figure 19. Mean abundance (\pm 1 S.E, n=6) of all sea cucumbers recorded at each of four Sites within two Islands and four Groups within the deep habitat.
- Figure 20. Mean abundance (± 1 S.E, n = 6) of Thelanota anax recorded at each of four Sites

- within two Islands and four Groups within the deep habitat.
- Figure 21. Mean abundance (\pm 1 S.E, n = 6) of Stichopus variegatus recorded at each of four Sites within two Islands and four Groups within the deep habitat.
- Figure 22. Mean abundance (\pm 1 S.E, n = 6) of *Holothuria edulis* recorded at each of four Sites within two Islands and four Groups within the deep habitat.
- Figure 23. Mean abundance (\pm 1 S.E, n = 6) of *Holothuria atra* recorded at each of four Sites within two Islands and four Groups within the deep habitat.
- Figure 24. Mean abundance (\pm 1 S.E, n = 6) of *Holothuria fuscopunctata* recorded at each of four Sites within two Islands and four Groups within the deep habitat.
- Figure 25. Mean abundance (± 1 S.E, n = 6) of *Holothuria fuscogilva* recorded at each of four Sites within two Islands and four Groups within the deep habitat.
- Figure 26. Length-frequency distributions of *Thelanota anax* from the deep habitat compared among Groups (data for Surveys, Islands and Sites pooled).
- Figure 27. Length-frequency distributions of *Holothuria atra* from the deep habitat compared among Groups (data for Surveys, Islands and Sites pooled).
- Figure 28. Length-frequency distributions of *Holothuria fuscopunctata* from the deep habitat compared among Groups (data for Surveys, Islands and Sites pooled).
- Figure 29. Length-frequency distributions of *Holothuria fuscogilva* from the deep habitat compared among Groups (data for Surveys, Islands and Sites pooled).
- Figure 30. Three-dimensional MDS plot of habitat characteristics (% cover) among all Sites and Groups sampled in the deep habitat (n = 32).

APPENDICES

- Appendix 1. GPS positions (Latitude and Longitude) for all Sites.
- Appendix 2. Abundance and length frequency data for all Sites during Surveys 1 3.
- Appendix 3. Asymmetrical ANOVAs for variates analysed from the shallow habitat.
- Appendix 4. Results of SIMPER analysis comparing habitat characteristics among Groups in the shallow habitat.
- Appendix 5. Asymmetrical ANOVAs for variates analysed from the deep habitat.

SUMMARY

BACKGROUND

Scientists have identified a number of potential benefits of marine reserves, including i) conservation of habitats and biodiversity; ii) maintenance of large populations of organisms and of larger individuals within such populations, leading to increased egg production; iii) sources of propagules (e.g. eggs and "seeds") to replenish areas depleted by over-exploitation; and iv) replenishment of adjacent areas by movement of larger individuals. Although there are strong theoretical arguments in support of these benefits, definitive studies have yet to be done for most marine reserves and habitats. One reason for this is the difficulty (i.e. lack of opportunities) to document changes within reserves prior to and after their declaration. In fact, to demonstrate unambiguously the effects of marine reserves, it is necessary to monitor populations within the reserve and at suitable reference locations prior to, and for some time after, declaration. This type of approach is analogous to sampling that has been developed recently for detecting environmental impact, where predicted changes in mean diversity and abundance at an impact site are compared against appropriate spatial and temporal controls.

The tropical Pacific encompasses a vast area and many independent states. Many of the people living in the region rely almost totally on marine resources for food, recreation, culture and cash income. Management of fisheries stocks on coral reefs is difficult using traditional methods and marine reserves potentially offer an effective management tool. Programs seeking to encourage declaration of marine reserves within the tropical Pacific will be able to promote this management tool more easily if the benefits of reserves are evaluated and documented. The planning and management of a marine conservation area (MCA) at the Arnavon Islands, Solomon Islands, has provided such an opportunity to test the use of a marine reserve on the management of exploited tropical marine invertebrates. The MCA has been implemented in conjunction with a rigorous, quantitative survey program to assess the effects of the MCA on commercially exploited invertebrates, including trochus, sea cucumbers, giant clams and pearl oysters.

With the assistance of The Nature Conservancy, local fishermen implemented a total closure on fishing of commercially important invertebrates for three years around much of the coastline of two islands within an MCA of 83 km² at the Arnavon Islands, located between Choiseul and Ysabel Islands, in the north of Solomon Islands. The Great Barrier Reef Marine Park Authority (GBRMPA) and the International Centre for Living Aquatic Resources Management (ICLARM) have organised the monitoring program. The overall aim of the monitoring program is to determine if the number and size of commercially important invertebrates increases in the MCA relative to fished areas.

METHODS

Under the original study proposal, three surveys of exploitable invertebrates using underwater visual census were to be done prior to the closure of fishing at the Arnavon Islands in August 1995, followed by a further three surveys in 1998. A pilot study was done in October 1994 to select sampling sites and refine the methodology. Based on the results of the pilot study, sampling was done at four Groups of islands (The Arnavons and three reference Groups - Waghena, Ysabel and Suavanao), at two Islands within each of the Groups and at four Sites within each of the Islands. This approach provided an assessment of changes in the abundance and size of invertebrates at three spatial scales - there was no prior information to suggest the scale at which

the MCA may have its greatest effect. In addition, sampling was done in two habitats: the shallow habitat, situated on reef terrace at depths of 0.5 - 3.5 m; and the deep habitat, located on steep sand and rubble slopes below the terrace at depths of 15 - 22 m. Because different species tended to occur within each habitat, separate survey methods were developed for each one. Surveys were done in January-February, April-May and July-August, 1995.

In the shallow habitat, six transects were surveyed by diving at each site during each survey. The transects were 50 m long and 2 m wide and were laid haphazardly over the reef. Trochus (Trochus niloticus), giant clams (Tridacnidae), pearl oysters (mainly blacklip pearl oyster, Pinctada margaritifera) and several species of sea cucumbers (Holothuria), such as greenfish (Stichopus chloronotus) and lollyfish (Holothuria atra) were recorded on slates for each transect. Specimens of each invertebrate were also measured. In the deep habitat, six transects were surveyed per site and survey. The transects were 50 long and 5 m wide and were laid across rather than down the slope. Species recorded were restricted to sea cucumbers such as white teatfish (Holothuria fuscogilva) and prickly redfish (Thelanota ananas) and pearl oysters (including also the goldlip pearl oyster, P. maxima). During Surveys 2 and 3, the benthic characteristics of each habitat were quantified in transects under categories such as rock pavement, sand, rubble, hard corals, algae and seagrasses.

The data obtained on abundance of invertebrates were analysed using a statistical procedure known as asymmetrical analysis of variance (ANOVA), which compared abundance at the Arnavons to all of the reference Groups, at the spatial scales of Groups, Islands and Sites. It also compared variation in abundance over the three survey times. The data on lengths of invertebrates were rather limited due to small numbers of specimens and interpretation of trends was restricted to inspection of means, standard errors and graphs of length-frequency distributions. Habitat characteristics were compared among groups and sites using multivariate procedures, including multidimensional scaling, (MDS), analysis of similarities (ANOSIM) and similarity percentages (SIMPER).

RESULTS

Shallow Habitat

Eighteen species of exploited invertebrates were recorded in the shallow habitat during the three surveys. The false trochus (*Pyramis tectus*) was also recorded. Of the 2021 individuals recorded, the most abundant group was the giant clams, which were represented by six species and made up 60% of all individuals. Among the giant clams, *Tridacna maxima* was the most abundant (39% of all individuals), followed by *T.crocea* (14%) and *T. derasa* and *Hippopus hippopus* (2% each). Ten species of sea cucumbers and 212 individuals were also recorded. Of these, *Bohadschia graeffei* and *Holothuria atra* were the most abundant (3% each of all individuals) followed by *Stichopus chloronotus* (2%). The gastropod *Trochus niloticus* made up 5% of all individuals and the pearl oyster *Pinctada margaritifera*, with only 12 individuals, made up < 1% of all invertebrates recorded.

ANOVA was used to compare the exploited invertebrates on the shallow habitat. The data collected prior to the declaration of the MCA showed that there were statistically significant differences in diversity and abundance of invertebrates at the small spatial scale of Sites within Islands and Groups. Four variables showed significant differences at the largest scale (Groups) and all 10 variables showed significant differences among sites. No variable showed significant differences at the intermediate scale of Islands within Groups. None of the variables showed

consistent variability across survey times. Rather, there was inconsistent variation through time among Groups and/or Sites. Comparisons of size-frequency distributions of invertebrates among Groups of islands were limited by the very large variability in sample sizes obtained. Where sample sizes were reasonable (i.e. n > 50), some differences among Groups of islands in size-frequency distributions were apparent. Very few individuals were recorded from the smaller size intervals, probably reflecting either the cryptic nature of small juveniles or the presence of separate nursery habitats for non-sessile species.

The shallow habitat was generally made up of rock pavement, rubble and sand, although the proportions of each substratum varied among Groups of islands. Rock was the predominant substratum at Waghena, the Arnavons and Suavanao, comprising over 70% of the habitat within each of these Groups. At Ysabel, rock comprised only 30% of the habitat, while coral rubble was the most common substratum (38%). Hard and soft corals and algae made up comparatively little (< 5%) of the shallow habitat. ANOSIM indicated that there were significant differences in the shallow habitat between all Groups. SIMPER analysis generally identified sand, rubble and rock as the characteristics of the habitat that explained most of the dissimilarity in habitat between paired comparisons of Groups.

Deep Habitat

Fifteen species of exploited invertebrates were recorded in the deep habitat during the three surveys. All but one of the 804 invertebrates recorded were sea cucumbers; the exception was a goldlip pearl oyster (*Pinctada maxima*). Among the sea cucumbers, *Holothuria atra* was the most abundant (24% of all individuals), followed by *Thelanota anax* (22%) and *Holothuria fuscogilva* (17%). ANOVA was used to compare the exploited invertebrates on the deep habitat for 8 variables, all including sea cucumbers. Six of the variates showed significant site effects that were consistent through time, one varied among sites inconsistently through time and one variate showed no significant differences through time or at any spatial scale. Comparisons of size-frequency distributions among Groups of islands were limited by large variability in sample sizes. Size ranges tended to be relatively narrow and unimodal. Several species of sea cucumbers showed trends in size-frequencies among Groups of islands, but these must be interpreted cautiously due to the small sample sizes obtained.

The deep habitat was dominated by sand and rubble substrata, with rock comprising less than 7% of the habitat at all Groups of islands. This was due largely to the selection of sampling sites, as we sought to maximise the habitat utilised by sea cucumbers. The percentage cover of sand ranged from 63% at Waghena to 83% at Suavanao and the cover of rubble ranged from 4% at Suavanao to 28% at Waghena. Massive/brain corals and soft corals made up a small proportion of the habitat, occurring on the rock substrata and algae, occurred occasionally on the soft substrata. ANOSIM indicated a global difference among sites, but we could not detect any significant pairwise comparisons among Groups. Similarly, the MDS plot did not suggest any trends in habitat characteristics among Groups.

DISCUSSION AND RECOMMENDATIONS

We expect that this study will be able to provide a sound test of the ability of the MCA to facilitate an increase in the numbers of invertebrates, due to: 1) the small abundances occurring prior to declaration of the MCA; 2) the similar levels of variability at the Arnavon Islands compared to the reference groups; and 3) the very sensitive test (i.e. many degrees of freedom) that

will be used in assessing the effects of the MCA. The data on invertebrate size may be problematic, however, because small sample sizes prior to declaration of the MCA limit the scope for analysis of data. Good recruitment of juveniles over the next three years would provide additional opportunities to detect the effects of the MCA on size frequency distributions.

The survey of habitat characteristics provides a measure of differences among Sites and Groups of islands throughout the study region. Existing information is limited on the extent to which the invertebrates of interest may be affected by habitat, although there is some information on particular species, such as trochus. Our knowledge of the habitat structure at each spatial scale, however, should have the potential to explain some of the patterns of variation seen after the MCA has been in effect for three years.

The sampling design used prior to declaration of the MCA should be continued during future surveys. The logistics, including the use of the Fisheries vessel "Daula", surveys by Solomon Islands fisheries officers and the MCA conservation officers, and the co-ordination provided by ICLARM have all proved very effective and should be maintained.

In addition to the three surveys planned for 1998, we strongly recommend that one interim survey be done each in 1996 and 1997. These surveys would have the following benefits: 1) they will provide an indication of trends in the stocks of invertebrates at the MCA and reference Groups; 2) they will provide information that could assist with the ongoing management of the MCA; 3) they will provide some "insurance" in the event that some unexpected disturbance occurs just prior to the 1998 surveys (e.g. a cyclone, poaching within the MCA, etc); and 4) they will help to maintain the interest of local communities and MCA wardens in the project. Finally, dissemination of the findings of the study to the Management Committee of the MCA, and to the scientific community, should be given a high priority.

1. INTRODUCTION

1.1 Background to the Study

A major problem in evaluating the effects of existing marine reserves on harvested populations and communities has been the lack of data collected prior to establishment of the refuge (Dugan and Davies 1993). There are numerous examples of this problem from both temperate and tropical regions, including the Philippines (Russ and Alcala 1989), Australia's Great Barrier Reef (Ferreira and Russ 1995), Africa (McClanahan 1995, Watson and Ormond 1994), the Caribbean (Roberts and Polunin 1993, Roberts 1995), California (Carr and Reed 1993) and New Zealand (Cole et al. 1990). Many scientists have argued that marine reserves have substantial benefits for conservation of aquatic communities and maintenance of harvestable stocks (Ballantine 1991, Ivanovici et al. 1993 and papers therein, Roberts and Polunin 1991, 1993, Russ 1991, Bohnsack 1993, Carr and Reed 1993, Dugan and Davies 1993). Others have pointed-out, however, that setting aside areas for marine reserves can have great social and economic cost for those who previously derived food, employment or recreational benefit from those areas (Bergin 1993). Therefore, scientists and managers need to assess whether specific reserves deliver the benefits attributed to them, and then inform those whose livelihoods are affected of any such benefits.

Bohnsack (1993), Carr and Reed (1993), Dugan and Davies (1993) and Polunin and Roberts (1993) provide good summaries of the potential benefits of marine reserves to the management of fisheries. Briefly, these include: 1) conservation of habitats, species diversity and genetic diversity; 2) maintenance of large populations of organisms and of large individuals within such populations, leading to increased egg production; 3) sources of propagules that can replenish other areas that may have been depleted by over-exploitation; and 4) replenishment of adjacent, non-protected areas by movement of larger individuals (e.g. either by random movement or density dependent processes).

Whilst there are strong theoretical arguments in support of these benefits, there is much less compelling evidence from field investigations. At present, it would be very difficult to demonstrate unequivocally the replenishment of non-protected areas, either through supply of propagules or movement of larger individuals. Carr and Reed (1993) argued that the extent to which reserves may supply propagules to non-protected areas depends on numerous factors, including locations of reserves and non-protected areas relative to larval duration, local currents and the size of reserves. Demonstrating a significant reserve effect in terms of larval supply may require examination of samples at the genetic level to trace biota between sites (Carr and Reed 1993).

De Martini (1993) examined potential replenishment of non-protected areas adjacent to marine reserves by computer modelling based on growth curves and mobility of Pacific coral reef fishes. He asserted that there was little empirical evidence to suggest that reserves replenished non-protected areas, citing Russ and Alcala (1989) as the best (but still inconclusive) evidence from the field. De Martini's (1993) modelling indicated that small, relatively mobile and fast-growing fishes (e.g. small Acanthuridae such as *Ctenochaetus striatus*) occurring in reserves were the species most likely to replenish adjacent, non-protected areas. Moreover, his models indicated that large, highly mobile and slow-growing fishes (e.g. Carangidae) and small, site-attached fishes (e.g. Pomacentridae) were unlikely to provide significant replenishment of non-protected areas.

Most of the work done on marine reserves has focused on the first two benefits listed above, namely, species diversity/abundance and size (or, more recently, age structure - see Ferreira and

Russ 1995). The design of field studies for this work usually includes sampling the reserve and one or more non-protected areas (as control or reference sites) but excludes, in most cases, sampling of reserve and non-protected areas prior to declaration of the reserve. Thus, in most cases, there is no measure of the extent to which reserve and non-protected areas differ due to natural variability, or to an effect due to the reserve.

In order to cast doubt on many of the earlier studies, one merely needs to demonstrate that: 1) variability among sites in the absence of a marine reserve is of a similar magnitude to that reported between reserve and non-protected sites; or 2) that variability through time within a site not subject to protection is comparable to variability within a site before and after it is declared a marine reserve.

Two examples of the former are contained in Lincoln Smith et al. (1995). In the first example, the authors surveyed coral reef fish subject to fishing to the same extent at two sites within four zones on the edge of the lagoon at the Cocos (Keeling) Islands, in the Indian Ocean. Natural variability was found to be large at relatively small spatial scales. Total abundance of harvestable fishes varied between sites within zones by a factor of four, and varied for Scaridae by a factor of 11. The second example involves the spider shell (Lambis lambis: Strombidae) known locally as gong gong, which is harvested from specific areas in the Cocos (Keeling) Lagoon. Lincoln Smith et al. (1995) surveyed gong gong at three sites within three locations in the main harvesting area and at three sites within two locations in a similar habitat on the far side of the lagoon where no harvesting took place (due to distance required for travel) and thus may be considered to be a natural reserve. Differences in abundance of gong gong among sites within the harvested area varied by up to 4.7 times. Differences between the harvested and non-harvested sites varied by up to 11 times, with greater numbers within the harvested area (Lincoln Smith et al. 1995).

Dugan and Davies (1993) summarised studies comparing reserve and non-protected areas; and found that reserves had two to 13 times more individuals than non-protected areas. However, this trend may be explained by the original selection of the reserves, which may have had intrinsic natural features that supported naturally large populations of marine organisms.

To demonstrate unambiguously the effects of marine reserves, it is necessary to monitor populations within the reserve and at reference locations prior to, and for some time after, declaration. This type of approach is analogous to sampling often done for environmental impact assessment, where predicted changes in mean diversity and abundance at an impact site are compared against appropriate spatial and temporal controls. Carr and Reed (1993) suggested that, for the purpose of such analysis, the reserve can be considered an "impact" on species of interest within the range of replenishment of the reserve.

The tropical Pacific encompasses a vast area and many independent states. Many of the people living in the region rely almost totally on marine resources for food, recreation, culture and cash income. Management of fisheries stocks on coral reefs is difficult using traditional methods and marine reserves potentially offer an effective management tool (Roberts and Polunin 1993). The World Conservation Union (IUCN) and the South Pacific Regional Environment Program (SPREP) have initiated a co-operative program to promote the establishment of a system of marine protected areas (MPAs) within the tropical Pacific. Despite the large size of the region, only 67 MPAs have been identified (Kenchington and Bleakley 1994) and, until the present project commenced, none had been declared in Solomon Islands, other than two small closures to fishing in the vicinity of the ICLARM research facilities.

Programs seeking to encourage declaration of marine reserves within the tropical Pacific will be able to promote this management tool far better if the benefits of reserves are evaluated and documented. In the present study, the planning and management of a marine conservation area (MCA) at the Arnavon Islands has been implemented in conjunction with a program to monitor the success of the MCA in facilitating an increase in the populations and sizes of harvestable invertebrates. This has been done using a rigorous, quantitative survey program based on the procedures developed for environmental impact assessment (Underwood 1989, 1993).

Large invertebrates are an important part of the local fisheries in Solomon Islands, because they are relatively easy to harvest, many of the products can be preserved without refrigeration and provide a significant export income (Richards et al. 1994). Important groups of invertebrates include giant clams, pearl oysters, trochus and holothurians, known commonly as sea cucumbers and processed into beche-de-mer. There is increasing information - mostly in terms of export volumes - to suggest that these invertebrates are either fully or over-exploited (Richards et al. 1994 and references therein). There is some regulation of harvesting at the government level (e.g. maximal and minimal size limits on trochus and bans on the export of giant clams and pearl oysters) and at the community level, for example, in Ontong Java harvesting of white teatfish (Holothuria fuscogilva) sea cucumber is prohibited during alternate years (Holland 1994). The limited information available suggests, however, that these measures are not enough to sustain the present rates of harvest. One management measure that has been suggested is the establishment of sanctuaries to provide stock which can replenish surrounding areas on a regular basis (Richards et al. 1994).

This report presents the findings of surveys of harvested invertebrates - including trochus, sea cucumbers, giant clams and pearl oysters - done prior to the declaration of the MCA at the Arnavon Islands and discusses the survey program for the next 3 to 4 years, spanning what is considered to be the post-harvesting recovery period. Thus, the outcomes of the present study will indicate the potential benefits that such reserves could have for the management of invertebrate fisheries within Solomon Islands and, hopefully, enable managers to encourage local communities to declare more reserves to assist in the management of their fisheries resources.

1.2 Study Participants

The Nature Conservancy (TNC) has negotiated with local fishermen a total closure on fishing of commercially important invertebrates (sea cucumbers, giant clams and trochus) for three years around much of the coastline of two islands within a Marine Conservation Area of 83 km² that has been declared at the Arnavon Islands, which lie between Choiseul and Ysabel Islands.

The International Centre for Living Aquatic Resources Management (ICLARM) informed the Great Barrier Reef Marine Park Authority (GBRMPA) of the opportunity to study the effects of fishing protection on commercially exploited invertebrates at the Arnavon Islands. GBRMPA obtained an ACIAR Small Grant to work with ICLARM and TNC to study the effects of the fishing closure. GBRMPA has engaged Mr Marcus Lincoln Smith of The Ecology Lab Pty Limited as Project Scientist.

During the study, the Division of Fisheries of Solomon Islands has provided logistical support and Fisheries Officers, who have been trained in survey procedures and transcription of data. These officers have participated in all of the surveys done so far. In addition, TNC has arranged for the

MCA to be staffed by six wardens from local communities. The wardens live on the islands and their major role is to ensure that the designated closures are observed. Some of the wardens have also been trained to scuba dive and have assisted in the surveys of invertebrates.

1.3 Study Aims and Rationale

The overall aim of the study may be summarised as follows:

To determine if the number and size of commercially important invertebrates increases in the MCA relative to fished areas.

The closure of fishing at the Arnavon Islands commenced in August 1995 and will extend at least until 1998. Abundances of invertebrates within the MCA, and at reference areas (i.e. places not subject to fishing closure), were estimated on three occasions prior to closure and will be reassessed on three occasions in 1998. This procedure will allow us to make a relatively unambiguous test of the effectiveness of the MCA. In fact, the experimental design is based on models developed over the last fifteen years to assess the impacts of human activities on aquatic ecosystems (Green 1979, Bernstein and Zaliniski 1983, Hurlbert 1984, Stewart-Oaten et al. 1986, Underwood 1993). In simple terms, we would conclude that the MCA was effective if the following conditions are met:

- 1. Differences in the number and/or size of exploitable invertebrates between the Arnavon Islands and reference areas are relatively small <u>prior to</u> the closure to fishing of the Arnavon Islands; and
- 2. Exploitable invertebrates at the Arnavon Islands become relatively more abundant and/or larger than those surveyed at reference areas some time <u>after</u> the closure of fishing at the Arnavon Islands.

Note that under these conditions, even if exploitable stocks in the reference areas vary over time, or if there is a statistically significant difference in numbers and/or size between the Arnavon Islands and the reference areas prior to closure, it is the <u>relative</u> difference through time between the reference areas and the Arnavon Islands that is crucial to determining the success of the MCA. However, the success of this empirical test depends on four assumptions:

- 1. That the fishing closure at the Arnavon Islands is effective;
- 2. That fishing effort in the reference areas does not change during the study:
- 3. That the period of time between the before and after surveys is sufficient to allow for a) significant recruitment to the exploitable stocks and/or b) a significant increase in the mean size of individuals of the exploitable stocks; and
- 4. That the small numbers of exploitable invertebrates reported from the Arnavon Islands (Ramohia and Tiroba 1993) are due to the effect of fishing rather than ecological processes (e.g. unsuitable habitat, poor natural settlement of larvae during the study period, etc).

The effectiveness of the closure will depend on the acceptance of the MCA by the local

communities and/or the ability of the wardens to discourage people from harvesting invertebrates within the MCA. Given the presence of the wardens and detailed negotiations with the community and their commitment to the success of the MCA, illicit fishing is not anticipated to be a problem. In relation to the second assumption, if fishing effort increased in the reference areas during the study with a subsequent decrease in the number of exploitable invertebrates, the analysis may lead us to conclude that the MCA was effective when in fact it was not. This is because there would be relatively more invertebrates at the Arnavons compared to the reference groups after the closure than before. This outcome is unlikely in practice, however, because the numbers of invertebrates at the reference areas were found to be so small that it would be very difficult to detect a significant decline in their numbers there. Also, unless there was an increase in numbers of invertebrates at the Arnavons after the closure relative to the Arnavons prior to the closure, we would be unlikely to conclude that the MCA was effective.

Of potentially greater concern is the possibility that fishing effort in the reference areas <u>decreased</u> during the study, with a subsequent increase in the number of exploitable invertebrates, leading to the false conclusion that the MCA at the Arnavons was not effective when in fact it may have been. This is because there would be relatively similar numbers of invertebrates at the Arnavons compared to the reference groups before and after closure. In such an event, an increase in abundance at all sites through time would probably be interpreted as a natural phenomenon (e.g. large, widespread settlement events) rather than an effect due to reduced fishing at all sites.

The period of time allowed for recruitment of stocks is dependent upon the arrangements negotiated with the local residents who fish the Arnavon Islands. However, three years should be sufficient for a recovery of trochus (Nash 1993) and to observe significant growth in giant clams (ICLARM, unpublished data). Consequently the third assumption is reasonable, although little is known about the settlement and growth rates of sea cucumbers. The fourth assumption also seems reasonable on the basis that Ramohia and Tiroba (1993) identified numerous locations at the Arnavon Islands that they considered to be suitable habitat for the invertebrates of interest, and that anecdotal information suggests that sea cucumbers and trochus were previously abundant at the Arnavon Islands. Moreover, according to Holland (1994), Ysabel Province is the third largest producer of sea cucumbers in the Solomon Islands, with most purchases coming from Kia, the closest major village to the MCA.

2. METHODS

2.1 Pilot Investigations

Under the original study proposal accepted by ACIAR, three surveys of exploitable invertebrates using underwater visual census were to be done prior to the closure of fishing at the Arnavon Islands (i.e. from January to August 1995). This was to be followed by a further three surveys at the nominated end of the closure (approximately 1998). The first of each of the prior- and post-closure surveys would be done by the project scientist, who would also train officers from Solomon Islands Fisheries Division in the survey procedures. The second and third of each of the prior- and post-closure surveys would be led by fisheries officers. Prior to designing the main survey procedure, however, a pilot study was done at the Arnavons in October/November 1994 to determine the optimal sampling procedures, select sampling sites and to commence the training of

in survey procedures. The findings of the pilot study are presented in Lincoln Smith (1994). A brief summary is provided here.

A review of the scientific literature revealed that several procedures have been developed to provide quantitative estimates of coral reef invertebrates (English et al. 1994), including the use of line-intercept methods for estimating abundance or proportional size of sessile organisms per distance of seabed surveyed; quadrats and strip transects to provide estimates of abundance per unit are of seabed surveyed; and timed counts to provide estimates per unit of search time. Other methods combine area and time - for example, manta tows are often done for a fixed time and tow-speed, in an estimated area on either side of the observer (Harriott 1984). Strip transect methods have been used by other workers to survey the species of interest in this study (e.g. Harriott 1984, Nash et al. 1995, Nash 1993, Munro 1993). On the basis of their experience and logistical considerations, strip transects were adopted for the present study.

As the exploitable invertebrates in the MCA occur over a depth range of at least 0 - 30 m (Wright and Hill 1993), we decided to sample in two distinct habitats: "shallow" and "deep" habitat. The shallow reef habitat ranged in depth from about 0.5 to 3.5 m and consisted mostly of flat terrace with live and dead coral. The deep habitat ranged in depth from about 15 m to 22 m and consisted of a relatively steep slope with sand and rubble substratum. Shallow reef was surveyed for trochus, giant clams, pearl oysters and sea cucumbers; the deep slope was surveyed only for sea cucumbers and pearl oysters.

We used the pilot investigations to evaluate the appropriate size of transects (i.e. length and width) and the optimal number of replicates, based on statistical considerations (maximising the power of tests to detect spatial and temporal variation), logistics and safe scuba diving practices. Detailed results of these evaluations are in Lincoln Smith (1994). The final survey procedure, based on these results, is presented in Section 2.3.

2.2 Study Sites and Survey Times

Within each of the two habitats, sampling was done at four sites within each of the two Arnavon Islands and at two reefs or islands in each of three references groups, Waghena, Ysabel and Suavanao (Figure 1). Thus, a total of 32 sites were sampled in both the shallow and deep habitats. During the first survey, the latitude and longitude of each site was recorded using a Global Positioning System (GPS, see Appendix 1). During subsequent surveys, sites were relocated using land marks and the original GPS positions. Since the pilot investigation, three surveys have been completed at every site. The times of these surveys were January-February 1995, April-May 1995 and July-August 1995.

2.3 Survey Procedures

To ensure that the procedures developed during the pilot investigations were standardised, a manual was written with explicit instructions and site descriptions. In addition, a series of colour photographs of the target invertebrates was included to assist with identification. All data were recorded on underwater writing slates and transferred nightly onto data sheets bound into a single booklet. The data sheets had spaces at the top to record the Area, Island, Site, Habitat, GPS position, date and comments on conditions at the time of the survey. Other information recorded

for each of the six replicate transects surveyed at each site included the replicate number, the diver undertaking the survey, his assistant, the water depth and time at the start and end of each replicate and the number and size of each invertebrate observed within the transect. At the conclusion of each survey, the data sheets were returned to the Project Scientist where they were checked for completeness and entered onto a computer spreadsheet (Excel 5.0). The details of survey procedures for the shallow and deep habitats are presented in the next two sections.

2.3.1 Invertebrates in the Shallow Habitat

Surveys in this habitat were done along relatively flat coral terrace, including coral pavement, rubble, live corals and occasional patches of sand. The depth range was from about 0.5 - 3.5 m, with most sampling done between 1.5 m and 2.5 m.

Invertebrates counted in this habitat included giant clams, trochus (*Trochus niloticus*), sea cucumbers, pearl oysters and false trochus (*Pyramis tectus*). The false trochus is not of commercial value; they were recorded but not measured. The sea cucumbers usually included lollyfish (*Holothuria atra*), orangefish (*Bohadschia graeffei*), greenfish (*Chloronotus stichopus*), surf redfish (*Actinopyga mauritiana*) and stonefish (*Actinopyga miliaris*). Another species of sea cucumber, *Holothuria coluber*, was often very common, but is of little or no economic value. This species was recorded but not measured.

The survey procedure for the shallow habitat was as follows. One diver descended to the terrace, anchored a tape and swam in a straight line over the terrace to the 50 m mark on the tape. If there was a noticeable current, the diver laid the transect swimming into the current, so that it was easier for the observer to do the survey. The line was laid haphazardly with respect to depth, rather than along a depth contour.

A second diver (the observer) swam along the tape holding a pvc "t-bar", which was a 2 m long pipe with a handle used to define the transect width of 2 m. The observer counted invertebrates within each transect and recorded the depth and time at the start and finish of each transect. Once the transect was surveyed, the first diver retrieved the tape and, after swimming for 10-20 m, relaid the tape in a different direction. If the water depth was < 1.5 m deep, observers did the shallow survey using snorkel rather than scuba. If the depth was > 1.5 m, the observer always used scuba to maintain the efficiency of the survey.

Two teams of divers sampled invertebrates along three transects at each site, giving a total of six transects for each site.

All the exploitable invertebrates counted within transects were measured to the nearest 5 mm in length, except trochus, which were measured to the nearest 1 mm. When time permitted, invertebrates seen outside the transect were also measured (but not counted) to increase the sample size for estimating size-frequency distributions. Measurements were done as follows. Sea cucumbers were measured from the mouth to the anus of the animal, over the top of the body, using a fibreglass tape measure. Each sea cucumber was disturbed as little as possible and the measurements taken quickly, so that there was minimal chance of the sea cucumber changing shape. Clams were measured along the top of the shell, as it was not possible to measure shell width because many individuals were buried. Trochus (*Trochus niloticus*) were measured across the widest point of the shell base. Pearl oysters were measured dorso-ventrally, i.e. from the apex to

the hinge of the shell.

2.3.2 Invertebrates in the Deep Habitat

Surveys in the deep habitat were done along coral, rubble and sand slopes. Sea cucumbers and goldlip and blacklip pearl oysters occurring in the deep habitat were counted and measured. The deep habitat contains some of the most valuable species of sea cucumbers, including white teatfish (Holothuria fuscogilva), black teatfish (Holothuria nobilis), elephant's trunkfish (Holothuria fuscopunctata) and prickly redfish (Thelanota ananas).

At each site, two teams of divers each laid their transect line three times to count and measure sea cucumbers and pearl oysters, giving a total of 6 counts per site. Each transect was 50 m long (defined by the tape measure) and 5 m wide (defined by a 5 m length of rope with a small float in the middle connecting the two divers). Each team of divers consisted of one diver who counted and measured invertebrates and another diver who laid and retrieved the transect. Invertebrates were measured as described in the previous section. Animals outside the transect were also measured if time permitted.

2.3.3 Habitat Characteristics

During Surveys 2 and 3, an additional diver quantified the benthic characteristics of the substratum at each site. This diver recorded the proportion of substratum made up of live coral, rubble, sand, algae, coral type, etc along 20 m sections of each transect. All features below the transect to the width of the writing slate (i.e. approximately 30 cm) were recorded. These data were collected to allow a comparison of sites in terms of habitat, and to determine whether any variability in abundance of important invertebrates among sites was correlated with habitat differences.

2.4 Statistical Analysis of Data

2.4.1 Abundance of Invertebrates

The abundance of invertebrates was compared among various spatial scales over time using an asymmetrical analysis of variance (ANOVA)(see Winer et al. 1991, Underwood 1993). Within the overall study region, the spatial scales were defined as <u>Groups</u>, which included, the Arnavons, and the three reference areas of Waghena, Ysabel and Suavanao, <u>Islands</u> within each Group and <u>Sites</u> within each Group and Island. Sites were the individual places where transects were laid. Separate analyses were done for the shallow and deep habitats, because different species of invertebrates generally occurred in each habitat and different survey methods were used. The factors examined using statistical analysis are summarised as follows:

- 1. Times, which was considered orthogonal and random;
- 2. Groups, which was considered random and included a comparison of The Arnavon Islands vs the 3 reference Groups, which was asymmetrical, and orthogonal with respect to Times;

- 3. Islands (Groups), which was orthogonal to Times, nested within Groups and a random factor; and
- 4. Sites (Islands(Groups)), which was orthogonal to Times, nested within Groups and Islands and a random factor.

Using this statistical model, potential variability in the abundance of invertebrates was partitioned according to several spatial scales over time (Table 1). Broadly, there were four main effects in the model, including Time and variability at the three spatial scales considered - Groups, Islands and Sites. A significant effect of Time would be interpreted as indicating that broad-scale changes occurred independently of sites during the period before declaration of the MCA. Within these spatial scales the analysis was partitioned to provide a 1) comparison of the reference or control Groups amongst each other, and 2) a comparison of the reference Groups with the Arnavon Islands (i.e. the MCA). Where the latter was statistically significant, we would conclude that, for the species analysed, the Arnavons varied significantly from the reference groups to an extent greater than the reference groups varied among each other prior to declaration of the MCA. The same conclusion would be reached for significant comparisons of reference areas versus the MCA for the smaller spatial scales of Islands and Sites.

In addition to the main effects, there were three sets of interactions, each involving Time and one of the spatial scales examined (Table 1). Where these interactions were significant, we would conclude that there was significant variability among Groups, Islands or Sites, but that this variability was not consistent through time. Where the interaction of Time and MCA vs reference Groups was significant, we would conclude that, for the species being compared, there was relatively large variability among islands and/or sites within the MCA prior to declaration.

The analysis used 6 replicates (i.e. the counts of invertebrates made along transects). Prior to analysis, data were tested for heteroscedasticity using Cochran's Test (Winer et al. 1991) and transformed as required. If transformation failed to stabilise the variances, the untransformed data were analysed and the test was interpreted conservatively. Under the statistical model used, there was no direct test of the main effects of Groups or Islands. Pooling of non-significant interactions ($P \ge 0.25$) sometimes allowed a test of these effects (Winer et al. 1991) and this was done where possible. Data analysed included total abundance of invertebrates, number of species and abundance of selected species.

2.4.2 Size-frequency Distributions

The size range, mean size and standard error was calculated for each species of invertebrate measured. Sample sizes were generally small, however, and data were pooled among transects, sites, islands and survey times, allowing a broad comparison of groups. For those species where 50 or more individuals were measured from one Group, or 100 or more were measured from all Groups, size-frequency distributions were graphed. No statistical analysis of the size-frequency data was done. Rather, the results have been presented and interpreted graphically.

2.4.3 Habitat Characteristics

Multivariate analyses (using the PRIMER Program) were used to characterise habitats across

spatial scales of interest. Dissimilarities were calculated using the Bray-Curtis index and data were transformed to the fourth root. Relationships were graphed using non-dimensional multidimensional scaling (MDS). Analysis of similarities (ANOSIM) was used to test for significant differences in habitat characteristics among Sites and/or Groups and, where significant, similarity percentages (SIMPER) analysis was used to identify those features of the habitat that contributed most to dissimilarities among Sites and/or Groups. Details of all these analyses are provided in Clark (1993).

Separate analyses were done for the shallow and deep habitats. A processing limitation in the PRIMER program meant that the entire set of data for each habitat could not be analysed simultaneously. To overcome this limitation, analysis was done at the spatial scales of Groups and Sites.

3. RESULTS

3.1 Invertebrates in the Shallow Habitat

3.1.1 Abundance of Invertebrates

Eighteen species of exploited invertebrates were recorded in the shallow habitat during the three surveys. The false trochus (*Pyramis tectus*) was also recorded (Table 2, Appendix 2). Of the 2021 individuals recorded, the most abundant group was the giant clams, which were represented by six species and made up 60% of all individuals. Among the giant clams, *Tridacna maxima* was the most abundant (39% of all individuals), followed by *T.crocea* (14%) and *T. derasa* and *Hippopus hippopus* (2% each). Ten species of sea cucumbers and 212 individuals were also recorded (Table 2, Appendix 2). Of these, *Bohadschia graeffei* was the most abundant (3% of all individuals), followed by *Holothuria atra* (3%) and *Stichopus chloronotus* (2%). The gastropod *Trochus niloticus* made up 5% of all individuals and the pearl oyster *Pinctada margaritifera*, with only 12 individuals, made up < 1% of all invertebrates recorded.

The total abundance of individuals varied little through time, with an average of 674 (SE = 12) invertebrates recorded per survey. Also, the numbers individual species showed little variation through time (Table 2). This suggests that, in the months before the declaration of the MCA, the abundance of exploited invertebrates was relatively constant. This general trend was supported by the statistical analyses described below.

ANOVA was used to examine 10 variables (Table 3, Figures 2-11, Appendix 3). Every variable showed statistically significant differences at the small spatial scale of Sites within Islands and Groups. Four variables showed significant differences at the largest scale (Groups), but no variable showed significant differences at the intermediate scale of Islands within Groups. None of the variables showed consistent significant variability across survey times. Rather, there was inconsistent variation through time among Groups and/or Sites for seven of the 10 variables (Table 3). Details of some of these analyses are set out below.

The mean number of all species of invertebrates showed inconsistent variation among sites through

time. This is shown by a significant interaction between Time and Sites, and between Time and Sites within the Arnavon Islands (Table 3) and is illustrated in Figure 2 (e.g. see inconsistent variation among sites through time at Is4, in the Arnavon Islands). A similar result was obtained for the abundance of *Tridacna maxima* (Figure 5).

On the other hand, the mean abundance of sea cucumbers showed consistent differences among sites, independent of the survey time (Table 3, Figure 3). For example, at Ysabel, Site 17 at Is5 had consistently larger numbers of sea cucumbers than most other sites within that island group.

The boring clam (Tridacna crocea), and the porcelain clam (Hippopus hippopus), both showed site differences that were consistent through time, but they also showed differences among Groups that were not consistent through time. For T. crocea, this was due to a slight increase in abundance at the Reference Groups in Survey 2 followed by a decrease in Survey 3. At the Arnavons, however, the opposite occurred, with a slight decrease in Survey 2 and an increase in Survey 3 (Figures 5 and 8). This species is slow-growing and we would not expect a significant change in numbers during the times surveyed. The variability recorded may therefore be an artifact of the sampling. For H. hippopus, the numbers of individuals remained relatively constant at the reference Groups over the three surveys, but at the Arnavons, a decrease was observed through time (Figures 8 and 9).

The smooth clam (*Tridacna derasa*) showed consistent site differences and interactions between time and group and between time and the reference areas (Table 3). The abundance of *T.derasa* was very small, but relatively greater at Ysabel (Figure 6). The Figure suggests there may have been an interaction between Islands at Ysabel, but this comparison was not statistically significant (Appendix 3).

Trochus shell (*Trochus niloticus*) and orangefish (*Bohadschia graeffei*) both showed significant variability at the scale of Sites (Table 3, Figure 10). Abundance of trochus was generally small. They were most abundant at Suavanao where average counts occasionally exceeded one individual per transect (Figure 10). Lollyfish (*Holothuria atra*) varied among sites inconsistently through time (Table 3). In the shallow habitat, they tended to be most abundant at Site 17, at Ysabel, and the interaction is attributed to changes in the relative abundance of lollyfish at that site through time (Figure 11).

In summary, the abundances of exploited invertebrates in the shallow habitat were generally small among all the sites surveyed. There was often variability among Sites, some variability among Groups, but no significant variability among Islands was detected. In general, there was little variability in abundance through time in the period prior to the declaration of the MCA. The structure of variability found in populations before the MCA was declared suggests that we would have a good chance of statistically detecting a moderate increase in abundance of invertebrates within the MCA following a period of recovery from exploitation. This is discussed further in the Discussion (Section 4).

3.1.2 Size-frequency Distributions

Comparisons of size-frequency distributions among Groups were limited by the very large variability in sample sizes (Table 4). In most cases, the number of invertebrates measured was small, even though individuals outside the transects were measured to increase sample sizes. Where

sample sizes were reasonable (e.g. n > 50), some differences among Groups in size-frequency distributions were apparent. Very few individuals were recorded from the smaller size intervals, probably reflecting either the cryptic nature of small juveniles or the presence of separate nursery habitats for non-sessile species. Four examples of species with relatively large sample sizes are shown in Figures 12 - 15 and discussed below.

Combined over all surveys, the size frequencies of *Tridacna maxima* were essentially unimodal (Figure 12). Graphs for each Group suggest that the sizes at Waghena were small compared to the other Groups. The modal size for Waghena was 16-20 cm, compared to 26-30 at the Arnavons and 21-25 at Ysabel. The mode for *T. maxima* at Suavanao was 16-20 cm, but there was a greater proportion of larger individuals there than at Waghena. The Coefficient of Variation (CV) ranged from about 28 - 41% (Table 4), indicating a moderate spread in the data across all size classes. Note also that the mean size of *T. maxima* tended to be larger at all Groups in Survey 1 than Surveys 2 and 3 (Table 4). This may be an artefact of the sampling procedures, as one observer (MLS) made a large proportion of the measurements in Survey 1, but none in the subsequent surveys (Appendix 2).

Tridacna derasa were not recorded at Waghena in any of the surveys and numbers at the Arnavons and Suavanao were very small (Figure 13). At Ysabel, individual sizes were spread widely over a large number of size intervals, with the modal size being 51-55 cm. During Survey 1 we observed extensive collecting of giant clams - particularly T. derasa and T. gigas - at Ysabel. In subsequent surveys, the numbers recorded declined, suggesting that the gathering may have significantly affected populations at Ysabel.

Tridacna crocea were abundant at several sites at Suavanao, moderately abundant at Waghena and Ysabel and rare at the Arnavons (Table 4, Figure 14). At Waghena, the modal size was 13 - 14 cm and at Ysabel it was 11 - 12 cm (Figure 14). At Suavanao, individuals measuring 7 - 12 cm were common. Sample sizes were too small at the Arnavons to evaluate (Figure 14).

Trochus niloticus were very rare at Waghena (only seven individuals) (Table 4, Figure 15). At the Arnavons, the modal size was 9 - 10 cm whereas at Suavanao, which had the most individuals, the mode was 11 - 12 cm. Two modes occurred at Ysabel, 9 -10 cm and 13 - 14 cm.

In summary, numbers of individuals measured were small, limiting our ability to compare sizes across times and spatial scales. We suspect that it will be relatively difficult to statistically detect an increase in the size of exploited invertebrates in the shallow habitat as a consequence of the MCA (see Discussion).

3.1.3 Habitat Characteristics

The shallow habitat was generally made up of rock pavement, rubble and sand, although the proportions of each of these components varied among Groups (Table 5). Rock was the predominant substratum type at Waghena, the Arnavons and Suavanao, comprising over 70% of the habitat within each Group. At Ysabel, rock comprised only 30% of the habitat, while coral rubble was the most common substratum type, comprising 38% of the habitat. Biological categories made up comparatively little of the habitat, with hard and soft corals and algae typically comprising < 5% of the substratum (Table 5).

ANOSIM indicated that there were significant differences in the shallow habitat between all Groups (Table 6). The MDS plot shows some separation of Groups, particularly for Ysabel, but the plot does not reflect the clear separation suggested by the ANOSIM (Figure 16). This is not surprising, given the relatively large number of sites used in the plot. The MDS was plotted in three dimensions to provide an acceptable level of stress for the plot (see Clark 1993).

SIMPER analysis identified those characteristics of the habitat that explained most of the dissimilarity between paired comparisons of Groups (Table 5, Appendix 4). Comparing the three largest discriminators of the shallow habitat at the Arnavons and Suavanao, the rubble character was the largest discriminator, occupying a relatively larger proportion of the substratum at the Arnavons. The percentage cover of soft coral (Suavanao > Arnavons) and sand (Arnavons > Suavanao) were the other important differences between the two Groups (Appendix 4). Comparing the Arnavons to Ysabel, sand was the greatest discriminator between these Groups (Ysabel > Arnavons), followed by rubble (Ysabel > Arnavons) and rock (Arnavons > Ysabel). Comparing the Arnavons to Waghena, sand was the largest discriminator (Arnavons > Waghena), followed by thin encrusting coral (Arnavons > Waghena) and rubble (Arnavons > Waghena). The data for percentage cover, and the analyses of these data, indicate that the shallow habitat is a complex mosaic of substrata, which differs to some extent among Sites and Groups within the region.

3.2 Invertebrates in the Deep Habitat

3.2.1 Abundance of Invertebrates

Fifteen species of exploited invertebrates were recorded in the deep habitat during the three surveys (Table 8). All but one of the 804 invertebrates recorded were sea cucumbers, the exception was a single goldlip pearl oyster (*Pinctada maxima*). Among the sea cucumbers, *Holothuria atra* was the most abundant (24% of all individuals), followed by *Thelanota anax* (22%) and *Holothuria fuscogilva* (17%). As in the shallow habitat, the total abundance of individuals varied little through time, with an average of 268 (SE = 10) invertebrates recorded per survey. Moreover, the numbers of many of the species showed little variation through time (Table 8) and this trend was supported by the statistical analyses described below.

ANOVA was used to compare the harvested invertebrates on the deep habitat for 8 variables, all involving sea cucumbers (Table 9, Figures 17-25). In contrast to the shallow habitat, most of the variables showed significant variation among Sites within Groups and Islands that did not vary significantly through time. Only one variable (species richness of sea cucumbers) showed a significant Time by Group (MCA vs reference groups) interaction, indicating that variation among Groups was inconsistent through time. The interaction was due to a slight increase in the number of sea cucumbers recorded during Survey 2 at the Arnavons, while the reference Groups showed a gradual decline over the three surveys (Figure 18). Apart from the previous example, none of the variables varied at the larger spatial scales of Groups or Islands, indicating that the numbers at the Arnavons, prior to the declaration of the MCA, were statistically similar to the reference areas which, in turn, were similar to each other (Table 4).

In summary, the abundances of exploited invertebrates in the deep habitat were generally small at all the sites surveyed. As in the shallow habitat, there was little variability in abundance through time in the period prior to the declaration of the MCA and so there is a good chance that we will

be able to statistically detect a moderate increase in abundance of invertebrates within the MCA following a period of recovery from exploitation (see Discussion).

3.2.2 Size-frequency Distributions

As in the shallow habitat, comparisons of size-frequency distributions among Groups were limited by the large variability in sample sizes (Table 10). In general, size ranges were relatively narrow and unimodal. Several species of sea cucumbers showed trends in size-frequencies among Groups, but these must be interpreted cautiously due to the small sample sizes obtained. Four examples of species with relatively large sample sizes are shown in Figures 26 - 29 and discussed below.

The size-frequency distribution of amberfish (*Thelanota anax*) was similar at all areas (Figure 26) but estimated best at Waghena and Suavanao where sample sizes exceeded 100. At these two Groups of islands, most individuals were in the size range of 51 - 65 cm.

Sample sizes of lollyfish (Holothuria atra) were highly variable among Groups, with the most being measured at the Arnavons (124 individuals) and the least at Ysabel (9). The modal size was 46 - 50 cm at Waghena, the Arnavons and Suavanao, and 41 - 45 cm at Ysabel (Figure 27).

Sample sizes of elephants trunk fish (Holothuria fuscopunctata) were similar but relatively small among Groups (Figure 28). Size frequencies of this species at the Arnavons were similar to Ysabel (modal size 46 - 50 cm). The modal size at Waghena and Suavanao was mode 41 - 45 cm. The modal size of white teatfish (Holothuria fuscogilva), one of the most valuable sea cucumbers, was 41 - 45 cm at all Groups of islands, except at Waghena, where it was 36 - 40 cm (Figure 29).

3.2.3 Habitat Characteristics

Unlike the shallow habitat, the deep habitat was dominated by sand and rubble substrata, with rock comprising less than 7% of the habitat surveyed at all Groups (Table 11). This finding is due largely to the selection of the sampling sites, as we sought to maximise the habitat utilised by sea cucumbers. The percentage cover of sand ranged from 63% at Waghena to 83% at Suavanao and the cover of rubble ranged from 4% at Suavanao to 28% at Waghena (Table 11). Biological categories made up a small proportion of the habitat, with massive/brain corals and soft corals occurring on the rock substrata and algae occurring occasionally on the soft substrata.

ANOSIM did not detect any significant pairwise comparisons among Groups of islands, although there was a global difference among sites (Sites: Global R = 0.414, P < 0.01; Groups: Global R = 0.051, P > 0.05). Similarly, the MDS plot (in three dimensions) does not reveal any trends in habitat characteristics among Groups (Figure 30). Due to the non-significant ANOSIM, no SIMPER analysis was done.

4. DISCUSSION

4.1 Assessment of Stocks within the Study Region Compared to Studies in other Regions

The baseline information gathered in the vicinity of the Arnavon Islands indicates that the stocks of exploited invertebrates within the study region are relatively small compared to studies done elsewhere. Table 12 lists the range of densities across all study groups and survey times for selected species of invertebrates and the mean and maximum densities reported in the literature. Among the giant clams, *Tridacna maxima* was the most common species recorded among all study Groups. Their densities ranged from 98 (Suavanao, Survey 3) to 194 per hectare (Waghena, Survey 2). Munro (1993) reported densities of over 1,000 individuals per hectare in French Polynesia. Munro also reported average densities of *T. derasa* and *T. gigas* of around 5 ha⁻¹. In the present study, estimates of the density of these species ranged from 0 - 56 ha⁻¹ for *T. derasa* and 0 - 10 ha⁻¹ for *T. gigas*, with largest densities occurring at sites within the Ysabel Group. As noted in the previous section, there may have been a decline in the mean densities of *T. derasa* at Ysabel during the study due to gathering. Estimated densities at Ysabel ranged from 56 ha⁻¹ during Survey 1, to 21 and 15 ha⁻¹ during Surveys 2 and 3, respectively.

Densities of sea cucumbers were also low in the study region - often by orders of magnitude - compared to other studies (Table 12). For example, the greatest density of Stichopus chloronotus recorded during the study was 31 individuals ha⁻¹ at the Arnavons during Survey 1, whereas densities of over 4,000 individuals ha⁻¹ have been reported in the literature. Densities of Holothuria fuscopunctata ranged from 1.6 - 13.2 ha⁻¹ in the study region; Preston (1993) reported mean densities of 22 ha⁻¹ and maximum densities of up to 106 individuals ha⁻¹. One of the most valuable species of sea cucumber, Holothuria fuscogilva (white teatfish), was present in densities of up to 16 individuals ha⁻¹. This is comparable to mean densities reported by Preston (1993).

Trochus niloticus ranged in density from 4 to 38 individuals ha⁻¹ during the study. In contrast, densities reported within the literature tended to be much greater, with maximum densities of > 2,500 individuals ha⁻¹ reported (Table 12).

Whilst the stock densities of exploited invertebrates tended to be relatively small, the sizes of invertebrates do not generally appear to be small relative to other published accounts, and most of the individuals measured were adults. This conclusion should be treated cautiously, however, because small juveniles of several species are highly cryptic and can be overlooked even by experienced observers (Munro 1993). According to research summarised by Munro (1993), Tridacna gigas mature as males at 25 - 35 cm and as females at about 50 cm. During the present study, two individuals measured less than 20 cm, but most ranged from over 40 cm to 96 cm. Munro also reported that T. maxima and T. squamosa matured as males at 5 cm and as females at 6 - 8 cm and 15 cm, respectively. On this basis, all the T. squamosa recorded during our study were mature as females. Similarly, most of the T. maxima were also mature, with a large proportion of clams being relatively large individuals.

Comparisons of the lengths of sea cucumbers recorded during the study with published accounts of length at maturity indicate that most individuals were adults. Interestingly, *Holothuria atra* tended to be smaller in the shallow habitat than the deep habitat, which is consistent with reports that this species uses tropical shallow (particularly in lagoons) as nursery habitat (Harriott 1984). All the *H*.

atra measured from the deep habitat were larger than the reported length at first maturity of 16.5 cm (Preston 1993). According to Preston, H. fuscopunctata matures at 35 cm; in our study few individuals were \leq 35 cm and the modal lengths were between 41 and 50 cm. As a final example, H. fuscogilva mature at 32 cm (Preston 1993) but most individuals we measured were \geq 36 cm.

Nash (1993) reported that trochus mature as males at 5 - 8 cm and as females at 5 - 9 cm. In the Solomon Islands, only individuals in the size range 8 - 12 cm may be collected. On this basis, many of the trochus measured were adults above the minimum legal size. The maximum size of trochus ranges from 15 - 16.5 cm, although in some areas their growth may be stunted, with individuals growing to no more than 8.5 cm (Nash 1993). According to Nash, mean lengths of trochus at ages 2 and 3 years are 5.8 and 7.6 cm respectively. Thus, if the Marine Conservation Area is successful, we may observe distinct cohorts of trochus > 8 cm at the Arnavons but not the reference Groups during the surveys done three years following declaration of the MCA.

4.2 Patterns of Variability Observed in Exploited Invertebrates and Implications for Monitoring the Success of the MCA

This study was designed to assess variability in abundance and size of exploited invertebrates at a number of spatial scales through time. At this stage of the study, the sample sizes available for length frequency analysis are too small to provide an appropriate test of any but the largest spatial scale considered (i.e. Groups). Ultimately, the type of analysis used to assess the effect of the MCA on the lengths of invertebrates will depend on the sample sizes obtained in the next three years, and to a lesser extent on the shape of the distribution of size frequency plots (which will determine the most suitable tests to use). To date, many of the plots obtained are unimodal and we may be able to use ANOVA (subject particularly to the assumption of normality) to compare the sizes of invertebrates among Groups over time in a before-and-after contrast. Alternatively, we may obtain sufficient data to compare numbers of biologically meaningful cohorts through time (e.g. > 8 cm trochus, see previous sub-section).

On the other hand, the data obtained on the abundance of invertebrates fits well within the structure of the original study design, which will be expanded to incorporate the data to be collected in the next three years. Power analyses done on a simpler model as part of the Pilot investigations suggested that the sampling design used for the main study would have sufficient statistical power to detect a realistic increase in abundance of invertebrates at the MCA compared to three reference Groups (Lincoln Smith 1994). Power analyses have not been done on the more complex design using the data for the first three surveys, but we expect that the study will be able to provide a very sound test of the ability of the MCA to facilitate an increase in the abundance of invertebrates, given: 1) the small abundances reported prior to declaration of the MCA compared to published accounts in other areas; 2) the similar levels of variability at the Arnavons compared to the reference Groups; and 3) the very sensitive test (i.e. many degrees of freedom) that will be used in assessing the effects of the MCA.

Table 1 described the factors compared statistically for the three surveys done prior to the declaration of the MCA. These comparisons were essentially the "Before" components utilised in monitoring environmental impact assessment and now often referred to as the Beyond BACI design (Underwood 1993). Table 13 describes the factors that will be compared once the data have been obtained for the three surveys to be done after declaration of the MCA. This final set of comparisons incorporates the "Before" and "After" component of the Beyond BACI design and

will be used to assess whether the MCA has significantly greater numbers of exploited invertebrates than other Sites, Islands and/or Groups within the study region.

Of the 20 terms examined in our Beyond BACI design, any one of six factors could indicate a significant effect due to the MCA (Table 13). The first factor indicating a significant effect of the MCA is the interaction between the Before and After contrast against impact versus reference Groups (i.e. the BA x IC term in Table 13). In other words, if this factor is significant the relationship between the MCA and the reference Groups before declaration would be different to the relationship after declaration. These are the largest spatial and temporal scales considered within the model and, if significant, we would conclude that an average effect occurred throughout the MCA over the three surveys done before and after declaration of the MCA. The next two terms (BA x Is(G(I)) and BA x S(Is(G(I)))) would indicate significant effects of the MCA, but at smaller spatial scales. A significant BA x Is(G(I)) term (Table 13) would occur, for example, if there was an increase in abundance of an invertebrate species at, say, Sikopo Island, relative to Kerehikapa and the islands within the reference Groups.

The last three terms that could indicate an effect due to the MCA, include interactions between each of the spatial factors and times nested within the Before and After contrast (T(aft) x IC; T(aft) x Is(G(I)); T(aft) x S(Is(G(I))) - see Table 13). Any one of these terms would be interpreted as indicating that the MCA had a relatively short term effect on the abundance of invertebrates at the spatial scale being considered. For example, it is plausible that a short term effect may be detected as a result of a poaching incident occurring within the MCA between two of the post-declaration surveys. It is also plausible that the effect of the MCA does not become apparent until the very end of the study, when a significant effect is detected only in the sixth survey. Either of these examples could explain significant "short-term" effects of the MCA. If the T(Aft) x IC interaction was significant, we would conclude that abundances at the scale of the whole MCA varied significantly from the reference Groups after the declaration and that this variation was greater than any differences that had been recorded prior to declaration. Note here that we need to satisfy conditions about spatial relationships before and after declaration of the MCA (Table 13). The same approach is adopted in regard to variation at the scales of Islands and Sites.

4.3 Potential Consequences of Variation in Habitat Characteristics for the Study

As reviewed in the Introduction to this report, Beyond BACI procedures were designed to assess the effects of human activities or developments, such as discharge of pollutants, construction of marinas, etc on the aquatic environment. In these situations, the sampling done before the development establishes the relationship between the putatively impacted site(s) and reference sites before any impact occurs. Thus, this relationship is established in the absence of the impact. In the present study, the relationship between the MCA and the reference groups has been established in the presence of a human activity (i.e. fishing) and the Beyond BACI framework will be used to assess variability at different spatial scales when the impact of fishing is removed from the MCA.

One of the crucial assumptions of the study is that the conditions within the MCA would be suitable to support more and/or larger invertebrates than occur there now in the absence of exploitation. The ability of the MCA to support exploited invertebrates depends on numerous factors, such as larval supply, and the characteristics of the habitat. We have no information on the hydrodynamic conditions of the study region, but, given the close proximity of the Arnavons to

other reef systems, we expect that there would be adequate supply of larvae to the Group. Moreover, there is some indirect evidence to suggest relatively homogeneous populations of giant clams throughout Solomon Islands, based on analysis of genetic characteristics of *Tridacna gigas* obtained from sites throughout the country, including Santa Ysabel (Benzie and Williams 1995).

The survey of habitat characteristics provides a measure of differences among Sites and Groups throughout the study region. Existing information is limited on the extent to which the invertebrates of interest may be affected by habitat. The most informative example is for trochus. Studies on this species suggest that juveniles recruit to intertidal areas and that they move into deep water as they grow (Nash 1993). However, it has also been found that adult trochus can occupy a variety of habitats, including intertidal areas, shallow reef terrace and reef extending as deep as 25 m (Nash 1993; Nash pers. comm.). Long et al. (1993) quantified abundances of trochus in relation to habitat on reefs in the Torres Strait. They found that densities on algal pavement, mixed rubble/algal pavement and rubble zone were statistically similar (density range: 445 - 590 trochus.ha⁻¹) and greater than on two categories of macroalgae and sand (range: 0 - 85.8 trochus.ha⁻¹). There was one habitat - coral garden - with intermediate densities (242 trochus.ha⁻¹) that did not differ significantly from either of the other two groups of habitats.

Given the small densities of trochus and other exploited invertebrates, it is not realistic to define the relationships between density (or size) and habitat using the data collected prior to declaration of the MCA. Our knowledge of the habitat structure at each spatial scale, however, may help to explain some of the patterns of variation seen after the MCA has been in effect for three years.

4.4 Recommendations and Conclusions

The selection of sampling sites and the sampling methods that have been developed should be continued during future surveys. The logistics, including the use of the Fisheries vessel "Daula", surveys by Solomon Islands fisheries officers and the MCA wardens, and the co-ordination provided by ICLARM have all proved very effective and should be maintained to ensure the continued success of the study.

In addition to the three surveys planned for 1998, we strongly recommended that one interim survey be done each in 1996 and 1997. These surveys would have the following benefits: 1) they will provide an indication of trends in the stocks of invertebrates at the MCA and reference Groups; 2) they will provide information that could assist with the ongoing management of the MCA; 3) they will provide some "insurance" in the event that some unexpected disturbance occurs just prior to the 1998 surveys (e.g. a cyclone, poaching within the MCA, etc); and 4) they will help to maintain the interest of local communities and MCA wardens in the project.

In conclusion, the research done for this project has contributed to achieving the original study aims by developing survey procedures, selecting sampling sites and obtaining a quantitative baseline of abundance and size of exploited invertebrates at the Arnavon Islands and reference Groups prior to the declaration of the MCA. We have also gathered and analysed data on the physical characteristics of both the shallow and deep habitat and this information may be useful for interpreting the final results of the study. In addition, a procedure for analysing the data upon completion of the study has been formulated which will allow us to examine, using a single test, all the abundance data for each variable considered. The interim sampling proposed annually over the next two years will have a number of direct and indirect benefit on the study. Finally, given

the relevance of this research to scientific understanding of conservation and management of aquatic fauna, dissemination of the findings of the study to the Management Committee of the MCA and to the scientific community, should be given a high priority.

6. ACKNOWLEDGMENTS

The success of this study so far has been due to the contribution of a large number of organisations and individuals. The study has been funded through the Great Barrier Reef Marine Park Authority (GBRMPA) by the Australian Centre for International Agricultural Research (ACIAR). The International Centre for Living Aquatic Resources Management (ICLARM) has coordinated the study, the Nature Conservancy (TNC), Solomon Islands Ministry of Agriculture and Fisheries (Fisheries Division) and Solomon Islands Ministry for Forests, Environment and Conservation have provided logistical support. Dr Bruce Mapstone from James Cook University has provided statistical advice. The Ecology Lab Pty Ltd provided computer facilities and technical support.

Individuals who assisted the authors at numerous stages of the study include R. Kenchington (GBRMPA), B. Mapstone (JCU) and B. Smith (ACIAR) for review and comment; M. Gervis, Idris Lane and other staff at the ICLARM Coastal Aquaculture Centre for logistical co-ordination of the field studies; E. Mayer and M. Orr (TNC) for liaison with communities affected by the MCA and P. Holthus (TNC) for assistance in the field during the pilot study and the second survey and collection of data on habitat characteristics; N. Kile and P. Ramohia (Fisheries Division) for undertaking the majority of the data-gathering and the crew of the M.V. Daula (Fisheries Division) for operating the work platform during field studies; and the MCA wardens for their assistance with surveys. In addition, we thank S. Connell, K. Astles, L. Howitt and K. Dempsey who assisted with data entry, statistical analysis and preparation of figures for this report; and the many local residents within the study region, who have enthusiastically embraced the concept of the MCA and have allowed members of the study team to stay in their villages or camp on their islands.

7. REFERENCES

- Ballantine, B. (1991). Marine Reserves for New Zealand. University of Auckland, Auckland, NZ, 196 pp.
- Benzie, J.A.H. and Williams, S.T. (1995). Gene flow among giant clams (*Tridacna gigas*) populations in Pacific does not parallel ocean circulation. *Marine Biology*, 123: 781-787.
- Bergin, T. (1993). Marine and estaurine protected areas: where did Australia go wrong? In Protection of marine and estuarine areas a challenge for all Australians. Proceedings of the fourth Fenner conference on the environment, Canberra, 9-11 October 1991. Ivanovic, A.M., Tarte, D. and Olson, M. (eds). Occassional Paper No. 4. Australian Committee for

- IUCN, Sydney.
- Bernstein, B.B. and Zalinski, J. (1983). An optimum sampling design and power tests for environmental biologists. *Journal of Environmental Management*, 16: 335-343.
- Bohnsack, J.A. (1993). Marine reserves they enhance fisheries, reduce conflicts and protect resources. *Oceanus* 36:63-72.
- Carr, M.H., and Reed, D.C. (1993). Conceptual issues relevant to marine harvest refuges examples from temperate reef fishes. Canadian Journal of Fisheries Aquatic Science, 50: 2019-2028.
- Clarke, K.R. (1993). Non-parametric multivariate analyses of change in community structure. Australain Journal of Ecology, 18:117-143.
- Cole, R.G., Ayling, T.M. and Creese, R.G. (1990). Effects of marine reserve protection at Goat Island northern New Zealand. New Zealand Journal of Marine and Freshwater Research, 24:197-210.
- Demartini, E.E. (1993). Modeling the potential of fishery reserves for managing Pacific coral reef fishes. Fisheries Bulletin, 91: 414-427.
- Dugan, J.E., and Davis, G.E. (1993). Applications of marine refugia to coastal fisheries management. Canadian Journal of Fisheries Aquatic Science, 50: 2029-2042.
- Ferreira, B.P. and Russ, G.R. (1995). Population structure of the leopard coralgrouper, Plectropomus leopardus, on the fished and unfished reefs off Townsville, Central Great Barrier Reef, Australia. Fishery Bulletin, 93:629-642.
- Green, R.H. (1979). Sampling Design and Statistical Methods for Environmental Biologists. Wiley, Chichester.
- Harriott, V.J. (1984). Census techniques, distribution, abundance and processing of large seacucumber species (Echinodermata: Holothuroidea) on the Great Barrier Reef. Report to GBRMPA, June 1984. 39 pages.
- Heslinga, G.A., Orak, O. and Ngiramengior, M. (1984). Coral reef sanctuaries for *Trochus* shells. *Marine Fisheries Review*, 46: 169-172.
- Holland, A. (1994). The Sea cucumbers industry in the Solomon Islands: recent trends and suggestions for management. SPC Sea cucumbers Information Bulletin, 6: 2-9.
- Hurlbert, S.H. (1984). Pseudoreplication and the design of ecological field experiments. *Ecological Monographs*, 54: 187-211.
- Ivanovic, A.M., Tarte, D. and Olson, M. (eds) (1993). Protection of marine and estuarine areas a challenge for all Australians. Proceedings of the fourth Fenner conference on the environment, Canberra, 9-11 October 1991. Occassional Paper No. 4. Australian Committee for IUCN, Sydney.

- Kenchington, R., and Bleakley, C. (1994). Identifying priorities for marine protected areas in the insular pacific. *Marine Pollution Bulletin*, 29: 3-9.
- Lincoln Smith M.P. (1994). Testing the Use of Marine Protected Areas to Restore and Manage Tropical Multispecies Invertebrate Fisheries at the Arnavon Islands, Solomon Islands. Report on Pilot Investigations. Unpublished report to the Great Barrier Reef Marine Park Authority, Canberra, pp 24 plus appendices.
- Lincoln Smith, M.P., Skilleter, G.A. and Underwood, A.J. (1995). Cocos (Keeling) Islands: managing the harvesting of marine organisms. In *Recent Advances in Marine Science and Technology '94*. Bellwood, O., Choat, H. and Saxena, N. (eds). Pacon International and James Cook University of North Queensland, pp.605-613.
- Long, B.G., Poiner, I. R. and Harris, A.N.M. (1993). Method of estimating the standing stock of *Trochus niloticus* incorporating Landsat satellite data, with application to the trochus resources of the Bourke Isles, Torres Strait, Australia. *Marine Biology*, 115: 587-593.
- McClanahan, T.R.; Nugues, M., and Mwachireya, S. (1994). Fish and sea urchin herbivory and competition in Kenyan Coral Reef Lagoons: the role of reef management. *Journal experimental marine Biology and Ecology*, 184:237-254.
- McClanahan, T.R. and Obura, D. (1994) Status of Kenyan coral reefs. Coastal Management, 23: 57-76.
- Mohamed-Pauzi, A. Mohd.-Adib, H., Ahmad, A and Abdul-Aziz, Y. (1994). A preliminary survey of giant clams research in Malaysia. Proceedings of Fisheries Research Conference, DOF, Mal., IV: 481-487.
- Munro, J.L. (1993). Giant clams. pp 431-450 in, A. Wright and L. Hill (eds), Nearshore

 Marine Resources of the South Pacific. Institute of Pacific Studies, Suva, Forum Fisheries

 Agency, Honiara and International Centre for Ocean Development,

 Canada.
- Nash, W.J. (1993). Trochus. pp 451-498 in, A. Wright and L. Hill (eds), Nearshore Marine Resources of the South Pacific. Institute of Pacific Studies, Suva, Forum Fisheries Agency, Honiara and International Centre for Ocean Development Canada.
- Nash, W.J., Tuara, P., Terekia, O., Munro, D., Amos, M., Leqata, J., Mataiti, N., Teopa, M., Whitford, J. and Adams, T. (1995). *The Aitutaki trochus fishery: a case study*. Inshore Fisheries Research Project Technical Document No. 9, pp72.
- Preston, G.L. (1993). Beche-de-Mer. pp 371-408 in, A. Wright and L. Hill (eds), Nearshore Marine Resources of the South Pacific. Institute of Pacific Studies, Suva, Forum Fisheries Agency, Honiara and International Centre for Ocean Development, Canada.
- Quinn, J.F.; Wing, S.R., and Botsford, L.W. (1993). Harvest refugia in marine invertebrate fisheries: models and applications to the red sea urchin, *Strongylocentrotus franciscanus*. *American Zoologist*, 33: 537-550.

- Ramohia, P.C. and Tiroba, G. (1993). The status of sedentary marine resources in the Arnavon Group. A report on a survey carried out between 12-26 April, 1993. Report to The Nature Conversancy. 15 pages + appendices.
- Richards, A.H.; Bell, L.J., and Bell, J.D. (1994). Inshore fisheries resources of Solomon Islands.

 Marine Pollution Bulletin 29: 90-98.
- Roberts, C.M. (1995). Rapid build up of fish biomass in a Caribbean marine reserve. Conservation Biology, 9: 815-826.
- Roberts, C.M and Polunin, N.V.C., (1991) Are marine reserves effective in management of reef fisheries?. Reviews in Fish Biology and Fisheries, 1:65-91.
- Roberts, C.M and Polunin, N.V.C., (1993) Marine reserves: simple solutions to managing complex fisheries? *Ambio*, 22: 363-368.
- Russ, G.R. (1991). Coral reef fisheries: effects and yeilds. In *The Ecology of Fishes on Coral Reefs*. Sale, P.F. (ed) Academic Press, San Diego, USA, 754 pp.
- Russ, G.R. and Alcala, A.C. (1989). Effects of intense fishing pressure on an assemblage of coral reef fisheries. *Marine Ecology Progress Series*, 56: 13-27.
- Sale, P. F. (1991). The Ecology of Fishes on Coral Reefs. Academic Press, San Diego, USA, 754 pp.
- Stewart-Oaten, A., Murdoch, W.M. and Parker, K.R. (1986). Environmental impact assessment: Pseudoreplication in time? *Ecology*, 67: 929-940.
- Tsutsui, I and Sigrah, R. (1994). Natural broodstock resources in Kosrae, Federated States of Micronesia. SPC Trochus Information Bulletin, 3: 9-11.
- Watson, M., and Ormond, R.F.G. (1994). Effect of an artisanal fishery on the fish and urchin populations of a Kenyan coral reef. Marine Ecology Progress Series 109: 115-129.
- Wright, A., and Hill, L.E.). (1993). Nearshore marine Resources of the South Pacific. Institute of Pacific Studies, Suva, 710 pp.
- Underwood, A.J. (1991). Experimental designs for detecting human environmental impacts on temporal variations in natural populations. Australian Journal of marine and freshwater Research, 42: 569-587.
- Underwood, A.J. (1993). The mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world. Australian Journal of Ecology, 18: 99-118.
- Winer, B. J., Brown, D.R. and Michels, K.M. (1991). Statistical Principles in Experimental Design, 3rd Edition. McGraw-Hill, New York.

TABLES

Table 1. Summary of Beyond BACI for before survey with explanation of implications for the MCA. ns = non-significant (p > 0.05), sig = significant (p < 0.05)

				F	- Ratio denominat	or		
Source of Va	ariance	Df		I	II (If I is ns)	III (If I is sig)	Interpretation if sig.	Implications for MCA
Times		2		ΤxG			* Universal change at one or more times in both MCA and reference groups.	Natural variation exits through time prior to MCA declaration & is consistent among groups
Groups		3						
·	Among C		2	T x G *			* Reference groups differ from each other independently of time	Natural variation exits among references groups prior to MCA declaration
	l vs C [=!C]		1		T x G*	Among C	* MCA groups are different from reference groups irrespective of time	
Islands(G)		4						•
	ls(G(C))		3	T x Is(G)" or Sites (Is(G))"			 Reference islands differ from each other independently of time 	Natural variation exits among references islands prior to MCA declaration
	Is(G(I))		1		T x ls(G)* or Sites (ls(G))*	ls(G(C))	 MCA islands are different from reference islands irrespective of time 	Natural variation exits among MCA islands prior to MCA declaration
Sites(Is(G))	S(Is(G(C)))	24	18	T x S(Is(G))			* Reference sites differ from each other independently of time	Natural variation exits among references sites prior to MCA declaration
	S(Is(G(I)))		6		T x S(Is(G))	S(Is(G(I)))	* MCA sites are different from reference sites irrespective of time	Natural variation exits among MCA sites prior to MCA declaration
T×G	T xG(C)	6	4	T x Is(G)			Either no short term temporal change among reference groups or significant short term temporal change among reference groups.	Natural short term changes in the abundances of species at the scale of groups exits prior to MCA declaration.

Table 1, continued

Source of Variance				F - Ratio denominator			_	
		Df			II (If I is ns)	III (If I is sig)	Interpretation if sig.	Implications for MCA
	T ×G(I)		2		T x is(G)	T xG(C)	Short term changes among MCA groups that is different from the short term changes among reference groups.	MCA and reference groups follow different time courses to each other prior to MCA declaration
T x Is(G)		8						
	T x Is(G(C))		6	T x S(ls(G))			Either no short term temporal change among reference islands or significant short term temporal change among reference islands.	Natural short term changes in the abundances of species at the scale of islands exits prior to MCA declaration.
	T x Is(G(I))		2		T x S(ls(G))	T x Is(G(C))	Short term changes among MCA islands that is different from the short term changes among reference islands.	MCA and reference islands follow different time courses to each other prior to MCA declaration
T x S(Is(G))	T x S(Is(G(C)))	48	36	Residual			Either no short term temporal change among reference sites or significant short term temporal change among reference sites.	Natural short term changes in the abundances of species at the scale of sites exits prior to MCA declaration.
	T × S(Is(G(I)))		12		Residual	T x S(Is(G(C)))	Short term changes among MCA sites that is different from the short term changes among reference sites.	MCA and reference sites follow different time courses to each other prior to MCA declaration
Residual		480						
Total	·	575	,			· · · · · · · · · · · · · · · · · · ·		
I = Impact C = Control n=6			· ·	# after post hoc elimination of ns terms (p>0.25)			 This is only valid if there are no short term temporal changes at any of the spatial scales 	

Table 2. Summary of abundance data for the shallow habitat - Islands and Sites pooled within areas (n = 48), Mean number per 100 m² transect. • indicates identification uncertain.

	Suavanao	Ysabel	Arnavons	Waghena	Survey 2		Suavanao	Ysabel	Arnavons	Waghena	Survey 1		
Total number	Mean SE	Mean SE	Mean SE	Mean SE		Total number	Mean SE	Mean SE	Mean SE	Mean SE			
282	1.31 0.20	1.31 0.16	1.31 0.23	1.94 0.28		251	1.13 0.21	1.38 0.24	1.33 0.23	1.40 0.24		Tridacna maxima	
w	0.00	0.04 0.03	0.02 0.02	0.06		6	0.06	0.10 0.04	0.00	0.02 0.02		Tridacna gigas	
11	0.06	0.21 0.07	0.02 0.02	0.00		28	0.02 0.02	0.56 0.14	0.00	0.00		Tridacna derasa	
9	0.06 0.04	0.06 0.04	0.00	0.06		10	0.02 0.02	0.13 0.06	0.02 0.02	0.04 0.03		Tridacna squamosa	
115	1.75 0.79	0.40 0.09	0.00	0.25 0.10		71	1.17 0.60	0.15 0.06	0.04 0.03	0.13 0.06		Tridacna crocea	
17	0.04 0.03	0.23 0.08	0.08 0.04	0.00		20	0.02 0.02	0.23 0.07	0.17 0.07	0.00		Hippopus hippopus	
15	0.00	0.17 0.08	0.10 0.04	0.04 0.04		z	0.00	0.17 0.06	0.31 0.11	0.00		Stichopus chlorontus	
17	0.04 0.03	0.17 0.08	0.08 0.05	0.06 0.05		24	0.06 0.04	0.17 0.07	0.15 0.06	0.13 0.07		Bohadschia graeffei	
0	0.00	0.00	0.00	0.00		6	0.00	0.06	0.06	0.00		Bohadschi argus	S
23	0.00	0.42 0.16	0.06	0.00		10	0.02 0.02	0.15 0.07	0.04 0.03	0.00		Holothuria atra	Species
Ξ	0.04 0.03	0.06	0.10 0.05	0.02 0.02		10	0.02 0.02	0.00	0.17 0.05	0.02 0.02		Actinopyga mauritaniana	
2	0.00	0.02 0.02	0.00	0.02 0.02		2	0.00	0.00	0.02 0.02	0.02 0.02		Brown stonefish*	
2	0.00	0.02 0.02	0.00	0.02 0.02		0	0.00	0.00	0.00	0.00		Thelanota anax	
0	9.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00		Actinopyga milaris	
0	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00		Thelanota ananas	
0	0.00	0.00	0.00	0.00		0	0.00	0.00	0.06	0.00		Holothuria nobilis	
157	0.85 0.16	1.13 0.21	0.73 0.12	0.56 0.14		167	0.77 0.15	1.08 0.21	0.88 0.16	0.75 0.14		Tectus pyramis	
31	0.38 0.10	0.19 0.06	0.06	0.02 0.02		28	0.32 0.10	0.08 0.05	0.15 0.05	0.04		Trochus niloticus	
ω	0.00	0.06	0.00	0.00		ω	0.00	0.02	0.02 0.02	0.02 0.02		Pinctada margaritifera	
698	4.48 0.92	4.48 0.38	2.58 0.32	3.00 0.34		659	3.54 0.70	4.27 0.31	3.35 0.39	2.56 0.31		Total	

	Suavanao	Ysabel	Arnavons	Waghena	Survey 3		
Total number	Mean SE	Mean SE	Mean SE	Mean SE			
263	0.98 0.15	1.69 0.16	1.43 0.23	1.44 0.19		Tridacna maxima	
4	0.00	0.06 0.04	0.00 0.00	0.02 0.02		Tridacna gigas	
9	0.00	0.15 0.07	0.04 0.03	0.00	i	Tridacna derasa	
=	0.00	0.13 0.06	0.06 0.04	0.04 0.03		Tridacna squamosa	
95	1.04 0.54	0.58 0.19	0.10 0.04	0.25 0.12		Tridacna crocea	
=	0.02 0.02	0.19 0.08	0.02 0.02	0.00		Hippopus hippopus	
10	0.00	0.13 0.07	0.06 0.05	0.02 0.02		Stichopus chloronaus	
18	0.02 0.02	0.13 0.06	0.15 0.08	0.08		Bohadschia graeffei	
သ	0.00	0.04 0.03	0.02 0.02	0.00	ļ	Bohadschi argus	100
21	0.02 0.02	0.35 0.12	0.02 0.02	0.04 0.03	- 1	Holothuria atra	Species
11	0.13 0.05	0.02 0.02	0.04 0.03	0.04 0.03	,	Actinopyga mauritaniana	
-	9.06	0.02	0.00	0.00]	Brown stonefish*	
_	9.00	9.00	0.00	0.02 0.02		Thelanota anax	
_	9.00	9.00	0.00	0.02 0.02		Actinopyga milaris	
_	0.00	0.00	0.00	0.02 0.02		Thelanota ananas	
_	0.00	0.00	0.00	0.02 0.02	4	Holothuria nobilis	
163	0.67 0.13	0.83 0.14	1.25 0.28	0.65	1	Tectus pyramis	
34	0.35	0.08	0.23 0.07	0.04 0.03		Trochus niloticus	
6	0.00	0.02	0.02	0.09 0.04	- 1	Pinctada nargaritifera	
664	3.46 0.63	4.94 0.44	3.52 0.44	2.90 0.28	7	Fotal	

Table 3. Summary of asymmetrical ANOVAs for derived and individual species of invertebrates in the shallow habitat.

Tests of a number of terms were not possible in the original model. See Appendix 3 for more details of the ANOVAs. I = Impact (i.e. MCA), C = Control.

Source of variation	Total	Total	Total	Tridacna	Tridacna	Tridacna	Hippopus	Bohadschia	Holothuria	Trochus
	number	abundance	abundance	maxima	derasa	crocea	hippopus	graeffei	atra	niloticus
	species	sea cucumbers	giant clams							
Transformation	none	log	none	log	none	none	none	none	none	none
Time	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Among Groups	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
I vs C	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
Among C	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
Islands (G)	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
Is(G(C))	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
Is(G(I))	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
Sites(Is(G))	**	**	•	•	•		•	•	•	•
S(Is(G(C)))	**	••	•	•	•	•	•	•	•	•
S(Is(G(I)))	ns	ns	ns	•	ns	•	ns	ns	ns	ns
T x Among Groups	ns	ns	ns	ns	•	ns	ns	ns	ns	ns
TxlvsC	ns	ns	ns	ns	ns	•	*	ns	ns	ns
T x Among C	ns	ns	ns	ns	•	ns	ns	ns	ns	ns
T x Islands (G)	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
$T \times Is(G(C))$	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
$T \times Is(G(I))$	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
T x Sites(Is(G))	**	ns	•	ns	ns	ns	ns	ns	•	ns
$T \times S(Is(G(C)))$	ns	ns	•	ns	ns	ns	ns	ns	•	ns
$T \times S(Is(G(I)))$	**	ns	ns	•	ns	ns	ns	ns	ns	ns
Residual										

Table 4. Summary of length frequency data for the shallow habitat. Coefficient of variation, cv = standard deviation / mean.

													Species	3						
		Tridacna maxima	Tridacna gigas	Tridacna derasa	Tridacna squamosa	Tridacna crocea	Hippopus hippopus	Stichopus chlorontus	Bohadschia graeffei	Bohadschi argus	Holothuria atra	Actinopyga mauritaniana	Brown stonefish*	Tectus pyramis	Trochus niloticus	Pinctada margaritifera	Thelanota anax	Thelanota ananas	Actinopyga milaris	Holothuria nobilis
Survey 1					•	7 :														
Waghena		74	1	0	2	15	0	0	10	0	0	2	1	0	3	1	0	0	0	0
	Min		44.50		13.00	5.50			31.50			26.50			10.50	11.50				
	Max		44.50			15.00			43.00				33.00		12.50	11.50				
	Mean SE	19.08 0.92			15.50 2.50	10.47 0.69			35.70			27.25			11.50 0.58					
	CV	41.38			2.50 22.81				1.11 9.80			0.75 3.89			0.56 8.70					
	•	41.00			22.01	25.50			3.00			5.03			0.70					
Arnavons	Number	51	0	3	1	1	3	17	4	1	18	9	1	0	9	0	0	0	0	0
	Min	7.50		55.50								23.00	-		8.00					
	Max	36.00		70.50	46.00	14.50				25.00			25.50		14.00					
	Mean	26.72		60.67							31.31	27.06			10.10					
	SE CV	0.92 24.73		4.92 14.04			9.12	1.08 18.91	3.81		1.05 14.18	1.44 15.99			0.67 19.99					
	CV	24.73		14.04			57.41	10.91	15.01		14.10	15.88			13.33					
Ysabel	Number	60	13	33	6	7	18	17	4	3	10	0	0	0	5	0	0	0	0	0
	Min	10.00	46.00	13.50	9.50	5.00	23.00	20.30	15.50	26.00	21.00				10.50					
	Max	32.50	80.50		41.00		45.50		32.00						12.50					
	Mean	23.01		43.17	28.50				25.50						12.08			•		
	SE	0.76	2.59	2.08	5.07	1.13	1.44	1.45	3.55	6.56	3.21				0.40					
	CV	25.58	15.99	27.69	43.57	31.07	18.47	21.36	27.87	33.41	30.64				7.32					
Suavanao	Number	83	1	2	1	61	2	0	14	1	3	1	0	0	46	0	0	0	0	0
	Min		95.50	28.00	44.50	Ψ.		•		34.00	_	28.00	•		6.50	•	•	_	_	•
	Max			28.00						34.00					12.50					
	Mean	22.54		28.00		8.61	27.50		32.64		30.83				10.62					
	SE	0.84		0.00		0.41	4.50		1.18		2.24				0.20					
	CV			0.00							12.60				12.63					

Suavanao	Ysabel	Amavons	Survey 2 Waghena	
Number Min Max Mean SE CV	Number Min Max Mean SE CV	Number Min Max Mean SE CV	Number Min Max Mean SE	
63 2.50 31.00 18.64 0.78 33.23	63 8.00 33.50 21.37 0.76 28.08	5.00 · 34.00 · 22.90 · 0.94 · 32.77	93 5.50 32.00 17.58 0.58 31.63	Tridacna maxima
0	2 59.00 2 67.00 0 63.00 4 4.00 8.98	43.00 4 43.00 4	0	Tridacna gigas
0	11 28.00 62.00 49.73 2.61 17.42	1 51.00 51.00	0	Tridacna derasa
3 10.50 32.00 24.17 6.86 49.15	3 11.50 50.00 30.83 11.11 62.43	0	3 9.50 32.00 21.50 6.54 52.67	Tridacna squamosa
83 2.00 14.00 7.70 3.20 42.10	18 5.00 15.00 11.17 0.70 26.65		12 2.00 16.50 9.38 1.21 44.80	Tridacna crocea
2 37.00 54.00 45.50 8.50 26.42	11 22.00 44.50 32.05 2.02 20.93	6 13.50 39.00 24.17 4.37 44.27	0	Hippopus hippopus
0	12 15.00 47.00 29.46 2.42 28.52	5 18.00 40.00 28.10 3.93 31.29	2 26.00 30.00 28.00 2.00 10.10	Stichopus chlorontus
2 20.50 24.00 22.25 1.75 11.12	8 23.00 39.00 30.06 1.84 17.29	4 21.00 32.00 27.38 2.66 19.41	4 34.00 37.00 35.38 0.69 3.89	Bohadschia graeffei
0	0	1.00 :	0	Bohadschi argus
•	20 16.00 38.00 24.45 1.17 21.33	1 36.00 36.00	0	Holothuria atra
25.00 31.00 28.00 3.00 15.15	2 30.00 30.00 0.00 0.00	9 23.00 32.00 28.11 1.19 12.66	1 31.00 31.00	Actinopyga mauritaniana
0	2 27.00 27.00 27.00 0.00 0.00	0	1 26.00 26.00	Brown stonefish*
0	0	0	0	Tectus pyramis
26 7.80 13.00 10.47 0.28 13.47	10 9.00 13.00 10.91 0.45 13.91	7 7.60 12.10 9.01 0.58 17.04	2 10.60 11.90 11.25 0.65 8.17	Trochus niloticus
1 12.50 12.50	15.00 15.00 15.00 0.00	7.00 7.00	1 7.00 7.00	Pinctada margaritifera
0	2 32.00 33.00 32.50 0.50 2.18	0	1 27.50 27.50	Thelanota anax
0	0	1 29.00 29.00	0	Thelanota ananas
0	42.00 42.00	0	0	Actinopyga milaris
0	0	0	0	Holothuria nobilis

													Species							
		Tridacna maxima	Tridacna gigas	Iridacna derasa	Tridacna squamosa	Tridacna crocea	Hippopus hippopus	Stichopus chlorontus	Bohadschia graeffei	Bohadschi argus	Holothuria atra	Actinopyga mauritaniana	Brown stonefish*	Tectus pyramis	Trochus niloticus	Pinctada margaritifera	Thelanota anax	Thelanota ananas	Actinopyga milaris	Holothuria nobilis
Survey 3		•																		
Waghena	Number	70	1	0	2	12	0	1	4	0	2	2	0	0	2	4	1	1	1	0
	Min	2.00	16.00		12.00	2.50		37.50	26.00		16.00	29.00			10.50	12.00	74.00	49.00	25.00	
	Max		16.00		26.50	13.00		37.50	36.00		44.00	31.50			12.00	13.00	74.00	49.00	25.00	
	Mean	18.57			19.25	9.46			30.75		30.00	30.25			11.25	12.38				
	SE	0.85			7.25	0.97			2.50		14.00	1.25			0.75	0.24				
	CV	38.36			53.26	35.53			16.23		66.00	5.84			9.43	3.87				
Arnavons	Number	69	0	2	3	5	1	3	7	1	1	2	0	0	17	1	0	0	0	0
	Min	5.00		11.00	8.00	4.00	15.00	28.00	20.00	27.00	43.00	22.00			6.00	5.00				
	Max	35.00		30.00	28.00	13.00	15.00	32.50	32.50	27.00	43.00	31.00			14.10	5.00				
	Mean	20.26		20.50	15.67	8.40		29.50	26.29			26.50			10.24					
	SE	0.91		9.50	6.23	1.77		1.50	1.73			4.50			0.67					
	CV	37.33		65.54	68.85	47.13		8.81	17.43			24.01			26.83					
Ysabel	Number	81	5	8	6	28	9	6	6	2	17	1	1	0	6	2	0	0	0	1
	Min	3.00	13.00	23.00	9.50	2.00	20.50		14.00	16.50		30.00	32.00		4.30	9.00				29.00
	Max	32.00	67.00	56.00	40.00	14.00	32.00	45.00	41.00	29.00	38.00		32.00		14.00	13.00				29.00
	Mean	18.38	38.40	38.88	24.08	9.45	27.61	30.92	29.33	22.75	26.68				7.82	11.00				
	SE	0.78	10.22	3.98	5.31	0.67	1.54	4.40	3.59	6.25	1.35				1.36	2.00				
	CV	38.22	59.49	28.92	53.99	37.60	16.71	34.87	30.01	38.85					42.56	25.71				
Suavanao	Number	47	0	0	0	37	1	0	1	0	1	6	0	0	18	0	0	0	0	0
	Min	4.00	·	•	•	3.50	•	J	33.50	Ū	31.00	24.00		·	6.50	•	•	•	•	•
	Max	32.50				16.00			33.50		31.00	27.00			13.20					
	Mean	20.05				9.55	55.00		55.50		31.00	25.33			10.18					
	SE	1.04				0.51	•					0.54			0.44					
	CV	35.69				32.47						5.247			18.39					

Table 5. Mean proportion (n = 32) and Standard error (SE) of habitat characteristics within the shallow habitat at each study Group.

Category	Туре	Wag	hena	Arna	vons	Ysa	bel	Suav	anao
	-71-	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Abiotic	Sand	1.66	0.56	1.88	0.49	11.83	2.93	0.50	0.21
• • • • • • • • • • • • • • • • • • • •	Rubble	9.29	4.54	10.34	2.81	38.38	4.36	4.89	2.73
	Rock	76.78	4.68	71.55	2.91	30.17	3.90	75.22	3.04
	Water(gully/fissure)	0.00	0.00	0.69	0.48	0.25	0.25	0.00	0.00
Hard coral	Massive/brain	1.89	0.51	2.78	0.55	2.34	0.50	2.91	0.39
	Encrusting(+digitate)	0.28	0.16	0.34	0.21	0.00	0.00	0.00	0.00
	Digitate	2.81	0.72	5.06	0.61	6.61	1.17	6.20	0.67
	Tabulate	0.38	0.15	0.48	0.16	0.97	0.29	0.45	0.17
	Branching (1°+2°)	0.27	0.09	0.13	0.10	1.19	0.31	1.88	0.84
	Thin encrusting	0.34	0.15	2.19	0.42	2.36	0.58	2.52	0.35
	Mushroom	0.10	0.05	0.14	0.09	0.00	0.00	0.09	0.07
Other fauna	Soft coral	2.42	0.72	0.39	0.11	0.94	0.28	3.16	0.70
	Sponges	1.50	0.46	0.23	0.07	1.28	0.29	0.20	0.15
	Sea fans/pens	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02
	Others	0.88	0.43	0.14	0.08	0.58	0.20	0.25	0.10
Algae	Coralline	0.34	0.12	0.00	0.00	0.00	0.00	0.44	0.27
-	Halimeda	0.63	0.20	2.09	0.67	1.56	0.40	0.27	0.13
	Macroalgae	0.06	0.04	0.97	0.27	0.52	0.15	1.02	0.64
	Turf-mixture	0.38	0.38	0.59	0.22	1.03	0.33	0.00	0.00

Table 6. Results of two-way ANOSIM test of differences of habitat variates among Groups for the shallow habitat. Pairwise comparisons among Groups are shown. Critical value for pairwise comparisons = 0.833

Test	Global R
Sites	0.41 ***
Groups	0.375***

Areas compared	Significant statistics	Probability
Arnavons vs. Suavanao	36	0.007
Arnavons vs. Waghena	17	0.004
Arnavons vs. Ysabel	17	0.004
Suavanao vs. Waghena	28	0.006
Suavanao vs. Ysabel	3	0.001
Waghena vs. Ysabel	4	0.001

Table 7. Rank contribution of shallow habitat types to differences between Groups as determined by SIMPER. Ranks are presented for the eight variates primarily responsible for differences.

Species	Arnavons	Arnavons	Arnavons	Suavanao	Suavanao	Waghena
•	Suavanao	Ysabel	Waghena	Waghena	Ysabel	Ysabel
Rubble	1	2	3	2	1	1
Soft coral	2	8	4	3	4	6
Sand	3	1	1	7	2	2
Thin encrusting	4	4	2	1	6	4
Massive/brain	5	6	7	5		
Branching	6	7		8	8	
Tabulate	7		8			
Digitate	8		5	4		5
Rock		3			3	3
Sponges		5	6	6	7	7
Halimeda					5	8

Table 8. Summary of abundance data for the deep habitat. Islands and Sites pooled within Groups (n = 48), mean number of each species and

of total abundance (all species pooled) per 250 m2 transect. Total number = total count per species Species otheria fescogilua tichopus variegatu etoactiel. 1 Survey 1 0.58 Wagbena Mean 0.04 0.02 0.02 0.00 0.10 0.00 0.00 0.33 0.08 0.02 0.15 0.00 0.02 0.00 1.35 SE 0.03 0.19 0.02 0.02 0.00 0.04 0.00 0.00 0.12 0.05 0.02 0.06 0.00 0.02 0.00 0.23 Amayons Mean 0.15 0.10 0.04 0.00 0.02 0.13 0.06 0.00 0.90 0.13 0.02 0.17 0.13 0.00 0.00 1.83 SE 0.19 0.02 0.02 0.00 0.04 0.00 0.00 0.12 0.06 0.02 0.06 0.00 0.00 0.00 0.22 0.10 0.06 0.00 0.00 0.04 Ysabel Mean 0.04 0.00 0.00 0.17 0.40 0.02 0.21 0.00 0.00 0.00 1.64 SE 0.05 0.04 0.00 0.00 0.03 0.03 0.00 0.00 0.06 0.16 0.02 0.07 0.00 0.00 0.00 0.19 0.04 0.69 0.02 Suavanao Mean 0.00 0.00 0.04 0.00 0.04 0.08 0.15 0.00 0.21 0.21 0.00 0.00 1.48 SE 0.03 0.16 0.02 0.00 0.00 0.03 0.00 0.03 0.04 0.11 0.00 0.09 0.07 0.00 0.00 0.27 Total number 16 69 1 3 15 3 2 71 36 3 35 274 16 0 Survey 2 Waghena 0.02 0.65 Mean 0.04 0.00 0.02 0.00 0.00 0.60 0.40 0.27 0.00 0.21 0.00 0.00 0.00 1.38 SE 0.02 0.16 0.03 0.00 0.02 0.00 0.00 0.00 0.13 0.08 0.00 0.08 0.00 0.00 0.00 Amavons Mean 0.10 0.10 0.04 0.00 0.04 0.08 0.02 0.00 0.83 0.33 0.00 0.23 0.04 0.00 0.00 1.83 SE 0.04 0.05 0.03 0.00 0.03 0.04 0.02 0.00 0.26 0.10 0.00 0.07 0.03 0.00 0.00 0.33 Ysabel 0.21 0.08 0.04 0.00 0.04 0.04 Mean 0.02 0.00 0.19 0.33 0.02 0.21 0.00 0.00 0.00 1.19 SE 0.08 0.04 0.03 0.00 0.03 0.03 0.02 0.00 0.08 0.11 0.02 0.10 0.00 0.00 0.00 0.20 0.04 0.52 Mean 0.00 0.00 0.00 0.08 Suavanao 0.00 0.00 0.08 0.15 0.00 0.23 0.38 0.00 0.00 1.48 SE 0.03 0.00 0.12 0.00 0.00 0.04 0.00 0.00 0.05 0.09 0.00 0.09 0.08 0.00 0.00 0.22 18 Total number 65 0 6 5 10 2 0 72 52 1 42 20 0 0 282 Survey 3 0.02 0.36 0.00 0.00 0.00 Waghena Mean 0.06 0.00 0.00 0.10 0.29 0.00 0.19 0.00 0.00 0.00 1.02 SE 0.02 0.11 0.00 0.00 0.00 0.04 0.00 0.00 0.04 0.10 0.00 0.08 0.00 0.00 0.00 0.16 Amayons Mean 0.13 0.06 0.00 0.00 0.04 0.08 0.00 0.00 0.73 0.21 0.02 0.33 0.04 0.00 0.00 SE 0.05 0.04 0.00 0.00 0.04 0.04 0.00 0.00 0.26 0.07 0.02 0.10 0.03 0.33 0.00 0.00 Ysabel Mean 0.15 0.11 0.02 0.00 0.06 0.02 0.04 0.00 0.17 0.31 0.02 0.00 0.02 1.23 SE 0.05 0.05 0.02 0.00 0.05 0.02 0.03 0.00 0.06 0.10 0.02 0.17 0.00 0.23 0.00 0.02 Suavanac Меза 0.04 0.38 0.00 0.00 0.00 0.06 0.00 0.08 0.27 0.00 0.04 0.35 0.02 0.02 1.27 0.03 0.08 0.00 0.00 0.00 0.04 0.00 0.00 0.05 0.13 0.03 0.00 0.09 0.02 0.02 0.21 Total number 16 43 0 11 0 52 52 19 248

Table 9. Summary of asymmetrical ANOVAs for derived and individual species of sea cucumbers for the deep habitat. Tests of a number of terms were not possible in the original model. I = Impact, C = Control.

Source of variation	Total number	Total	Stichopus	Thelenota	Holothuria	Holothuria	Holothuria	Holothuria
	of species of	abundance of	variegatus	anax	atra	edulis	fuscopuntat	sp.
	sea cucumbers	sea cucumbers	•					
Transformation	none	log	none	none	none	none	none	none
Times	ns	ns	ns	ns	ns	ns	ns	ns
Among Groups	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
l vs C	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
Among C	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
Islands (Groups)	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
Is(G(C))	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
ls(G(I))	No Test	No Test	No Test	No Test	No Test	No Test	No Test	No Test
Sites(ls(G))	**	**	*	44	*	ns	*	*
S(Is(G(C)))	**	**	•	**	•	ns	*	*
S(Is(G(I)))	ns	ns	ns	ns	**	ns	ns	ns
Tx Among Groups	ns	ns	ns	ns	ns	ns	ns	ns
T x I vs C	•	ns	ns	ns	ns	ns	ns	ns
Tx Among C	ns	ns	ns	ns	ns	ns	ns	ns
T x Islands (G)	ns	ns	ns	ns	ns	ns	ns	ns
$T \times Is(G(C))$	ns	ns	ns	ns	ns	ns	ns	ns
$T \times Is(G(I))$	ns	ns	ns	ns	ns	ns	ns	ns
T x Sites(Is(AG)	ns	ns	ns	ns	ns	ns	ns	ns
$T \times S(Is(G(C)))$	ns	ns	ns	ns	ns	ns	ns	ns
$T \times S(Is(G(I)))$	ns	ns	ns	ns	ns	ns	ns	ns
Residual			2					

Table 10. Summary of length frequency data for the deep habitat. Coefficient of variation, cv = standard devation / mean.

Species

									Specie	s						
		Stichopus variegatus	Thelanota anax	Thelanota ananas	Black sandfish*	Actinopyga milaris	Bohadschia argus	Bohadschia marmorata	Bohadschia graeffei	Holothuria atra	Holothuria fuscogilva	Holothuria nobilis	Holothuria fuscopunctata	Holothuria edulis	Pinctada maxima	Brownstone fish*
Survey 1																
Waghena	Number	2	36	1	1	0	5	0	1	21	6	1	9	0	1	0
•	Min	50.00	42.00	43.50	33.00		27.00		41	35	31.5	36.5	35		15.6	
	Max	56.00	79.50	43.50	33.00		51.00		41	49	46	36.5	52.5		15.6	
	Mean	53.00	55.99				39.90			43	36,583		43.33			
	SE	3.00	1.17				3.90			0.9	2.4813		1.71			
	CV	8.00	12.51				21.86			10	16.614		11.84			
Arnavons	Number	9	2	1	0	2	5	2	1	45	6	4	10	4	0	0
	Min	45.00	54.00			26.00		28.00	35	31.5	40	31	25	26.5		
	Max	62.50		66.00		29.50		30.50	35	55	48.5	46	54	42		
	Mean	55.09	57.75				37.90	29.25		42.71	44.417	38	48.5	36.13		
	SE	1.98	3.75			1.75	3.68	1.25		0.938	1.3504		2.689			
	CV	10.78	9.18			8.92	21.73	6.04		14.73	7.4472	16.33	17.54	19.36		
Ysabel	Number	5	4	0	0	2	2	0	0	8	21	1	10		0	0
	Min	46.00	61.50			31.00				29.5	25.5	39.5	37.5	45		
	Max	57.50	74.50				49.50			46.5	45.5	39.5	49			
	Mean	52.40	66.38			31.50				40.75			45.25			
	SE	2.28	3.03			0.50	9.75			1.991	1.1803		1.07			
	CV	9.72	9.13			2.24	34.69			13.82	14.76		7.481			
Suavanao		5	50	1	0	0	2	0		8		0	13		0	0
	Min	53.50		74.00			40.00		28	41.8	36		41	14		
	Max	61.00	111.00	74.00			45.00		38	60.5	45		55			
	Mean	57.80	60.58				42.50		33	50.29	42.25		48.08			
	SE	1.40	1.50		•		2.50		5	2.03	1.199		1.431			
	CV	5.42	17.47				8.32		21.43	11.42	8.0264		10.73	23.06		

Suavanao	Ysabel	Arnavons	Survey 2 Waghena	
Number Min Max Mean SE CV	Number Min Max Mean SE CV	Number Min Max Mean SE CV	Number Min Max Mean SE CV	
2 51.50 61.50 56.50 5.00 12.52	10 46.00 62.50 53.55 1.38 8.13	6 47.50 55.00 51.00 1.12 5.37	1 54.00 54.00	Stichopus variegatus
30 44.50 6 80.00 6 65.23 1.53 12.88	5 65.00 (74.00 (68.20 (1.53 5.02	57.00 (72.00 (63.40 (2.66 9.37 1	42.00 (71.00 7 57.06 (1.10 12.67	Thelanota anax
64.50 64.50	3 56.00 62.00 58.17 1.92 5.72	45.00 59.00 52.13 3.57 13.71	2 63.00 72.00 67.50 4.50 9.43	Thelanota ananas
0	0	0	0	Black sandfish*
1 42.00 42.00	2 30.00 33.00 31.50 1.50 6.73	27.00 : 27.00 : 27.00 : 27.00 : 0.00 :	1 33.50 33.50	Actinopyga milaris
1 34.00 34.00	4 35.50 40.50 37.75 1.05 5.57	43.00 43.00 43.75 37.75 1.89	0	Bohadschia argus
•	28.50 28.50	1 37.00 37.00	0	Bohadschia marmorata
	0	0	0	ठि। Bohadschia graeffei
4 31.5 52 44.63 4.543 20.36	10 43 55 49.5 1.41 9.009	44 36 54.5 44.95 0.76 11.22	20 38.5 58 48.13 0.981 9.113	Holothuria atra
10 40 49 44.2 1.0493 7.5075	24 36.5 48.5 43.188 0.6025 6.8349	18 22 52.5 39.806 1.9609 20.9	16 20 43 35.531 1.3201 14.861	Holothuria fuscogilva
•	2 40.5 42 41.25 0.75 2.571	6 34 58 48.75 4.613 23.18	0	Holothuria nobilis
12 26 57.5 44.96 2.206	13 48 55.5 50.65 0.654 4.654	14 41 54 47.75 1.22 9.56	:a <u>1</u> 25	Holothuria
			T 54 40 T 1	fuscopunctata
17 16.5 46.5 30.82 1.619 21.66	3 22.5 31 27.83 2.682 16.69	2 33 42.5 37.75 4.75 17.79	0	Holothuria edulis
0	0	0	0	Pinctada maxima
0	0	0	0	Brownstone fish*

Table 10, continued.

										Species	<u> </u>						
		Stichopus variegatus	Thelanota anax	Thelanota ananas	Black sandfish*	Actinopyga milaris	Bohadschia argus	Bohadschia	marmorata	Bohadschia graeffei	Holothuria atra	Holothuria fuscogilva	Holothuria nobilis	Holothuria fuscopunctata	Holothuria edulis	Pinctada maxima	Brownstone fish*
Survey 3 Waghena	Number Min	1 60.00	24 49.00	1 57.00	0	0	3 40.00		0	0	6 43	17 34	0	10 32	0	0	0
	Max Mean	60.00	72.00 59.10				42.00 41.00				56 46.75	51 41		47 42.45			
	SE CV		1.60 13.28				0.58 2.44				1.896 9.936	1.1632 11.697		1.334 9.94			
Arnavons	Number Min	7 46.50	5 48.00	1 47.00	0	4 27.00	6 22.00		0	0	35 26.5	11 39	1 31.5	17 35	2 37.5	0	0
	Max	61.50	64.50			34.50					60	52	31.5	56	48		
	Mean	52.71	55.10			29.13	34.07				45.06	44.136		48.15	42.75		
	SE	2.30	2.74			1.81	2.78				1.165	1.2794		1.335	5.25		
	CV	11.55	11.14			12.41	20.01				15.3	9.6138		11.43	17.37		
Ysabel	Number	7	6	1	0	4	1		2	0	9	19	1	23	0	0	0
	Min	47.00	55.00	66.00		25.00		31	.00		32	36.5	45	39			
	Max	59.50	75.00	66.00		39.00	36.00		.00		55	52	45	57			
	Mean	52.57	63.83			32.50			2.00		44.61	43.132		49.11			
	SE	1.62	2.89			2.87			.00		2.451	0.8591		0.967			
	CV	8.15	11.10			17.68		4	.42		16.48	8.6822		9.442			
Suavanao		2	26	0	0	0	3		0	0	4	14	0	2		1	1
	Min	62.00	46.00				33.00				34	41		48	17	24.5	25
	Max	66.00	72.00				40.00				44	56		51	40	24.5	25
	Mean	64.00	58.98				36.33				40	46.25		49.5	30.79		
	SE	2.00	1.28	•			2.03				2.16	1.0092		1.5	1.434		
	CV	4.4194	11.096				9.666				10.8	8.1647		4.285	19.2		

Table 11. Mean proportion (n = 32) and Standard error (SE) of habitat characteristics within the deep habitat at each study Group.

Category	Туре	Wag	hena	Ama	vons	Ysa	bel	Suavanao	
Calegory	-76-	Mean	SE	Mean	SE	Mean	SE	Mean	SE
Abiotic	Sand	63.42	6.36	69.89	3.95	74.89	4.59	82.78	3.10
	Rubble	28.14	5.51	14.02	2.68	9.38	2.30	3.52	0.77
	Rock	3.50	1.45	6.16	1.52	5.44	1.38	5.42	2.16
Hard coral	Massive/brain	0.38	0.13	2.45	1.10	1.20	0.34	2.42	0.57
	Encrusting(+digitate)	0.00	0.00	0.00	0.00	0.03	0.03	0.00	0.00
	Digitate	0.13	0.05	0.63	0.41	0.22	0.09	0.34	0.18
	Tabulate	0.08	0.06	0.16	0.08	0.33	0.28	0.06	0.06
	Branching (1°+2°)	0.25	0.18	0.98	0.32	0.05	0.03	0.72	0.33
	Thin encrusting	0.09	0.09	2.58	0.77	2.25	1.25	1.06	0.41
	Mushroom	0.07	0.03	0.30	0.12	0.05	0.03	0.13	0.05
Other fauna	Soft coral	1.09	0.26	1.20	0.22	3.63	1.24	1.64	0.46
	Sponges	0.56	0.17	0.84	0.23	1.34	0.28	1.19	0.35
	Black coral	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03
	Sea fans/pens	0.20	0.11	0.00	0.00	0.00	0.00	0.13	0.07
	Others	0.02	0.02	0.28	0.13	0.59	0.23	0.00	0.00
Algae	Coralline	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.02
	Halimeda	1.67	1.26	0.14	0.06	0.44	0.32	0.30	0.12
	Macroalgae	0.28	0.20	0.33	0.12	0.16	0.08	0.20	0.16
	Turf-mixture	0.06	0.04	0.00	0.00	0.00	0.00	0.03	0.03
Seagrass	Halophila ovalis	0.05	0.03	0.05	0.05	0.02	0.02	0.03	0.03

Table 12. Comparison of densities of exploited invertebrates recorded during the present study (averaged over each Group) with estimates for other Indo Pacific Islands. nd = no data; * indicates no differentiation between deep and shallow habitats.

Invertebrate species	Range of density across study groups in the study region (no./ha)	Rep	orted densities	Reference	
•		Mean density (no/ha)	Maximum density (no./ha)		
Giant clams (shallow habitat):	<u>,</u>				
Tridacna maxima	98 - 194	nd	> 1000	Munro 1993	
Tridacna gigas	0 - 10	5	50	Munro 1993	
Tridacna derasa	0 - 56	5	33	Munro 1993	
Tridacna squamosa	0 - 13	400	nd	Mohamed-Pauzi et al. 1994	
Tridacna crocea	0 - 175	1390	>3000	Munro 1993	
Hippopus hippopus	0 - 23	30 - 39	nd	Munro 1993	
Sea Cucumbers (shallow & deep habitat):					
Actinopyga mauritaniana (shallow)	0 - 17	nd	304	Preston 1993	
Actinopyga miliaris (shallow)	0- 2	512*	5,970 - 78,900*	Preston 1993	
Actinopyga miliaris (deep)	0 -2.4	**	11	Preston 1993	
Stichopus chloronotus (shallow)	0 - 31	nd	4,258	Preston 1993	
Stichopus variegatus (deep)	0.8 - 8.4	nd	456	Preston 1993	
Holothuria atra (shallow)	0 - 42	545*	7,270*	Preston 1993	
Holothuria atra (deep)	3.2 - 36	17	11	Preston 1993	
Holothuria fuscopunctata (deep)	1.6 - 13.2	22	106	Preston 1993	
Holothuria fuscogilva (deep)	3.2 - 16	11 - 18.4	43 - 81.7	Preston 1993	
Holothuria nobilis (shallow)	0 - 2	13 - 18.7*	43 - 275*	Preston 1993	
Holothuria nobilis (deep)	0 - 0.8	n	**	Preston 1993	
Thelanota ananas (shallow)	0 - 2	16.8 - 18*	31.4 - 141*	Preston 1993	
Thelanota ananas (deep)	0 - 1.6	Ħ	97	Preston 1993	
Thelanota anax (shallow)	0 - 2	41*	241*	Preston 1993	
Thelanota anax (deep)		**	99	Preston 1993	
Trochus (shallow habitat):					
Trochus niloticus	4 - 38	222 - 2,016	2,775	Nash et al. 1995	
			1,290	Tsutsui & Sigrah 1994	
		62 - 590	nd	Long et al . 1993	

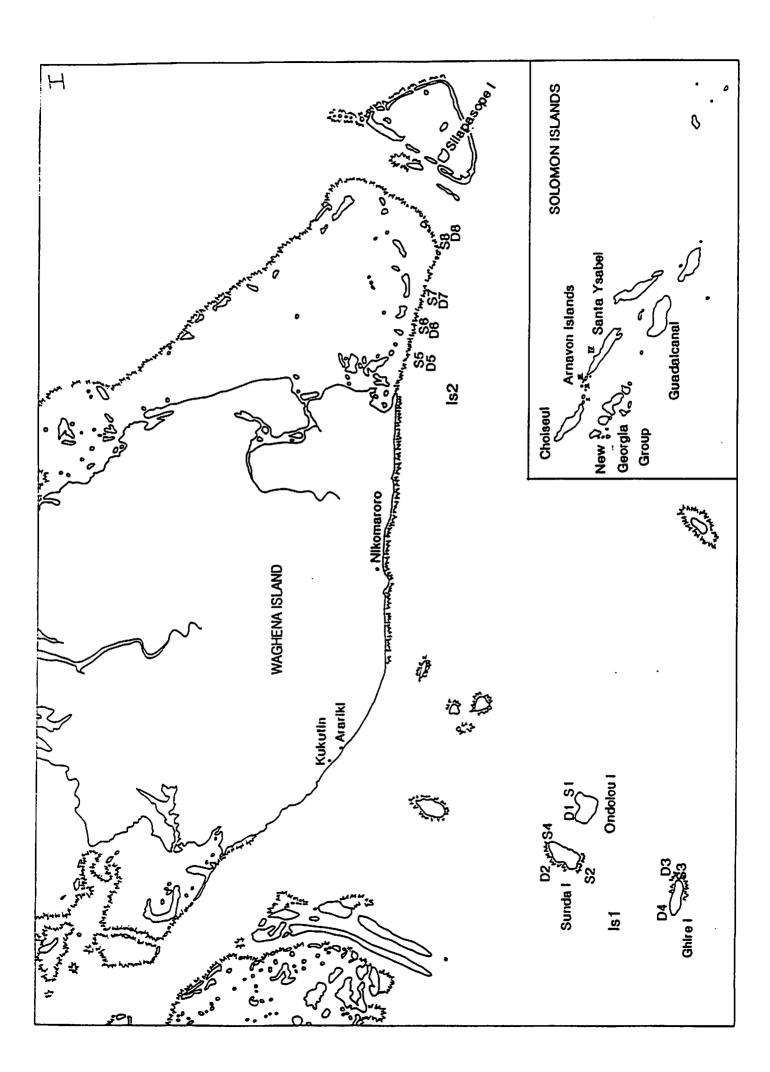
Table 13. Summary of Beyond BACI design for full survey with explanation of implications for the MCA. ns = non-significant (p > 0.05), sig = significant (p < 0.05) Shaded boxes indicate a significant effect due to the MCA. See text for explanation of Beyond BACI. I = Impact, C = Control

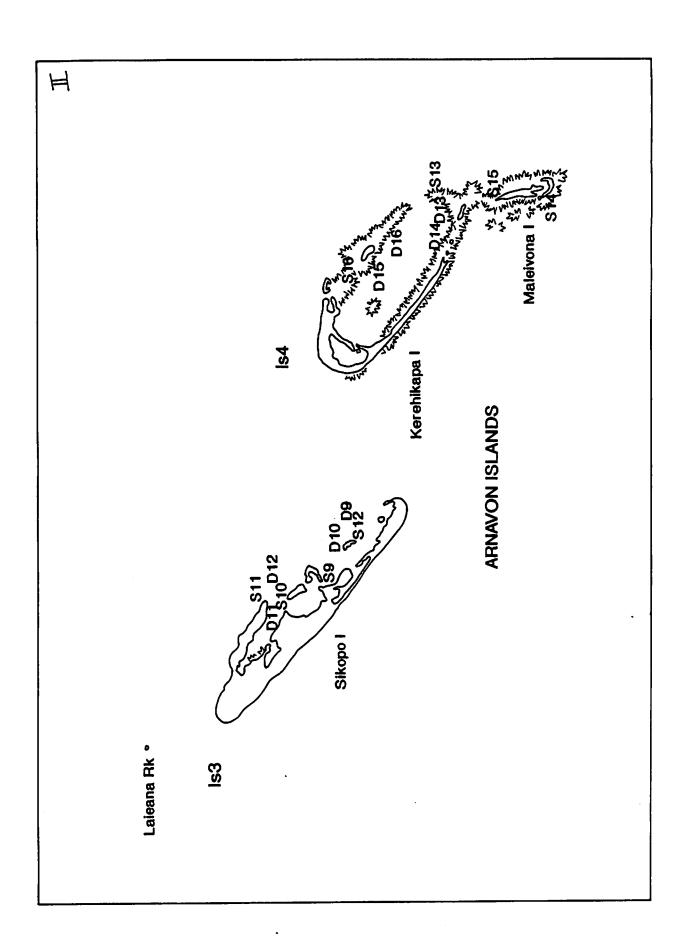
			F-	Ratio denominato	•		
Source of Va	riance	Df		II (If I is ns)	III (If I is sig)	Interpretation if significant	Implications for MCA
Before vs After	r	1	T(BA) x G'			Universal change over period of study in both MCA and reference areas.	No effect of the existence of MCA detected
Times(BA)		4	T(BA) x Is(G)			Universal change at one or more times in both MCA and reference areas.	No effect of the existence of MCA detected
Groups		3					
	Among C		2 T(BA) x G'			Reference groups differ from each other independently of time declaration.	No effect of the existence of MCA detected
	I vs C [=IC]		1	T(BA) x G*	Among C	MCA groups are different from reference groups irrespective of time of declaration	No effect of the existence of MCA detected
Islands(G)	ls(G(C))	4	3 $T(BA) \times Is(G)^{s}$			Reference islands differ from each other independently of time declaration.	No effect of the existence of MCA detected
	ls(C(I))		1	T(BA) x ls(G)'	Is(G(C))	MCA islands are different from reference islands irrespective of time of declaration	No effect of the existence of MCA detected
Sites(ls(G))		24					
	S(Is(G(C)))		18 T(BA) x S(Is(G))			Reference sites differ from each other independently of time declaration.	No effect of the existence of MCA detected
	S(Is(G(I)))		6	$T(BA) \times S(Is(G))$	S(Is(G(I)))	MCA sites are different from reference islands irrespective of time of declaration	

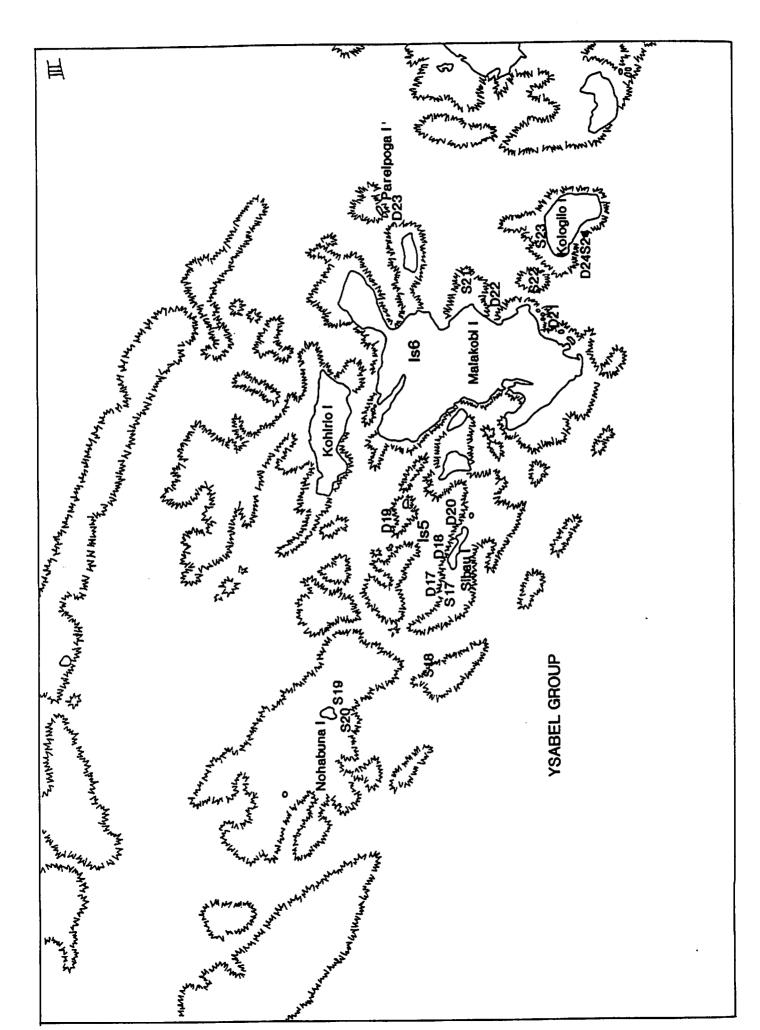
Table 13, continued

			-	F	-Ratio denominato	or		
Source of Va	riance	Df		I	II (If I is ns)	III (If I is sig)	Interpretation if significant	Implications for MCA
BAxG	BA x C	3	2	Resid			* Significant change overall among reference groups.	Reference groups differ from before to after declaration of MCA but may only be coincidential
	BA x IC		1		Resid	BA x C	Overall change in the abundances of species among MCA groups from before to after declaration of MCA	MCA has had an overall effect on species abundances at the spatial scale of the whole MCA Group.
BA x Is(G)	BA x Is(G(C))	4	3	Resid			* Significant change overall among reference islands.	Reference islands differ from before to after declaration of MCA but may only be coincidential
	BA x Is(G(I))		1		Resid	BA x Is(G(C))	Overall change in the abundances of species among MCA islands from before to after declaration of MCA	MCA has had an overall effect on species abundances at the spatial scale of islands.
BA x S(Is(G))	BA x S(Is(G(C))	24	18	Resid			* Significant change overall among reference sites.	Reference sites differ from before to after declaration of MCA but may only be coincidential
	BA x S(Is(G(I))		6		Resid	BA x S(Is(G(C))	Overall change in the abundances of species among MCA sites from before to after declaration of MCA	MCA has had an overall effect on species abundances at the spatial scale of sites.

Table 13, continued


		<u> </u>				F-Ratio denomina	ntor		
Source of Vai	riance		Df		1	II (If I is ns)	III (If I is sig)	Interpretation if significant	Implications for MCA
T(BA) x G			12						
	T(bef) x G		6						
		T(bef) x C		4					
		T(bef) x IC		2					
	T(aft) x G		6						
		T(aft) x C		4	Resid			Significant short term temporal change overall among reference groups	Reference groups have different short term variation after declaration of MCA from before but may be coincidential
		T(aft) x IC		2		Resid	i) T(aft) x C ii) T(bef) x IC iii) T(bef) x C	Short term temporal changes among MCA groups that differs from short term changes in reference groups	MCA has caused short term changes in the abundances of species at the scale of groups
T(BA) x Is(G)			16						
, , , ,	T(bef) x ls(G)		8	}					
	, , , , ,	$T(bef) \times Is(G(C))$		6					
		$T(bef) \times Is(G(I))$		2					
	T(aft) x Is(G)		8	}					
		T(aft) x Is(G(C))		6	Resid			Significant short term temporal change overall among reference islands	Reference islands have different short term variation after declaration of MCA from before but may be coincidential
		T(aft) x Is(G(I))		2		Resid	i) T(aft) x Is(G(C)) ii) T(bef) x Is(G(I)) iii) T(bef) x Is(G(C))	Short term temporal changes among MCA groups that differs from short term changes in reference islands	MCA has caused short term changes in the abundances of species at the scale of island


Table 13, continued


				F-R	atio denomina	ator	_	
Source of Variance		Df		1	II (If I is ns)	III (If I is sig)	Interpretation if significant	Implications for MCA
$T(BA) \times S(Is(G))$		96				<u>-</u>		
T(bef) x S(Is(G))	41	8					
	$T(bef) \times S(ls(G(C)))$		36					
	$T(bef) \times S(Is(G(I)))$		12					
$T(alt) \times S(ls(G))$		41	В					
	T(aft) x S(ls(G(C)))		36 R	esid			Significant short term temporal change overall among reference sites	Reference sites have different short term variation after declaration of MCA from before but may be coincidential
	T(aft) x S(Is(G(I)))		12		Resid	i) T(aft) x S(ls(G(C))) ii) T(bef) x S(ls(G(l))) iii) T(bef) x S(ls(G(C)))	Short term temporal changes among MCA groups that differs from short term changes in reference sites	MCA has caused short term changes in the abundances of species at the scale of sites
Residual		960						
Total		1151			·		÷+ ;	
I = Impact C = Control n=6			elimina	post hoc ation of gnificant			* This is only valid if there are no short term temporal changes at any of the spatial scales	

FIGURES

Figure 1. The study area and sampling sites on following pages. Map I = Waghena Group and inset of Solomon Islands, showing approximate position of Groups (I - IV) within the study region. Map II = Arnavon Islands Group; Map III = Ysabel Group; Map IV = Suavanao Group.

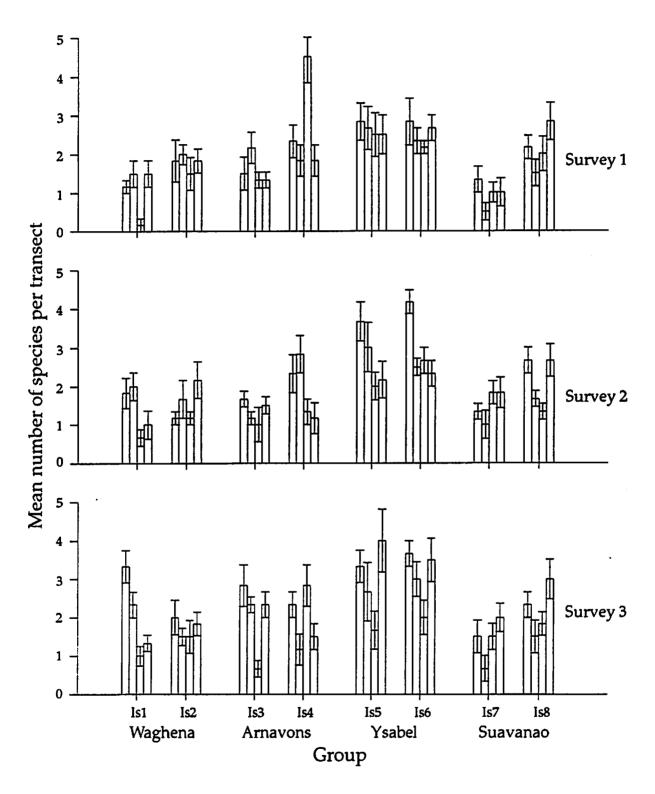


Figure 2 Mean number (+/-SE; n=6) of species for each of four sites at two islands (Is1 - Is8) within four groups in the shallow habitat during each survey. Site numbers (S1 - S32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

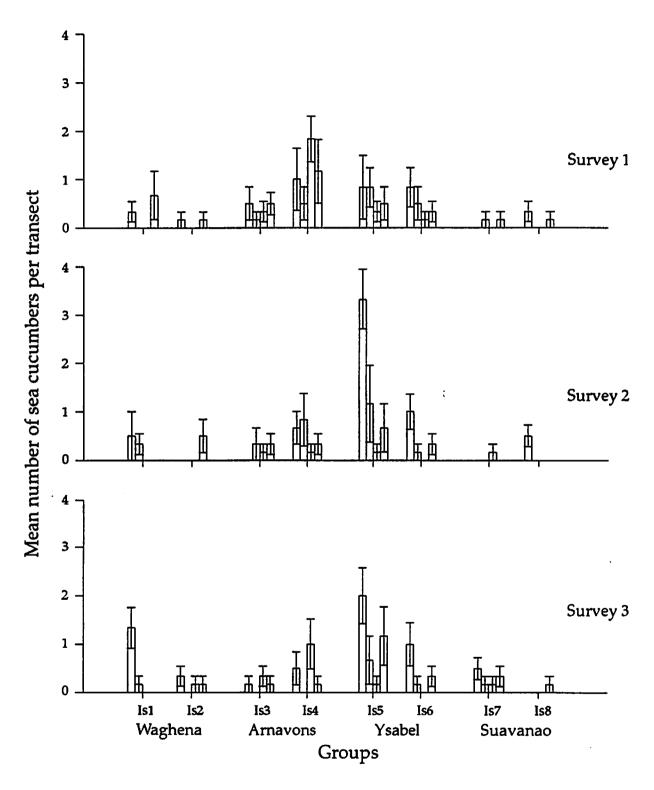


Figure 3 Mean number (+/-SE; n=6) of all sea cucumbers for each of four sites at two islands (Is1 - Is8) within four groups in the shallow habitat for each survey. Site numbers (S1 - S32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

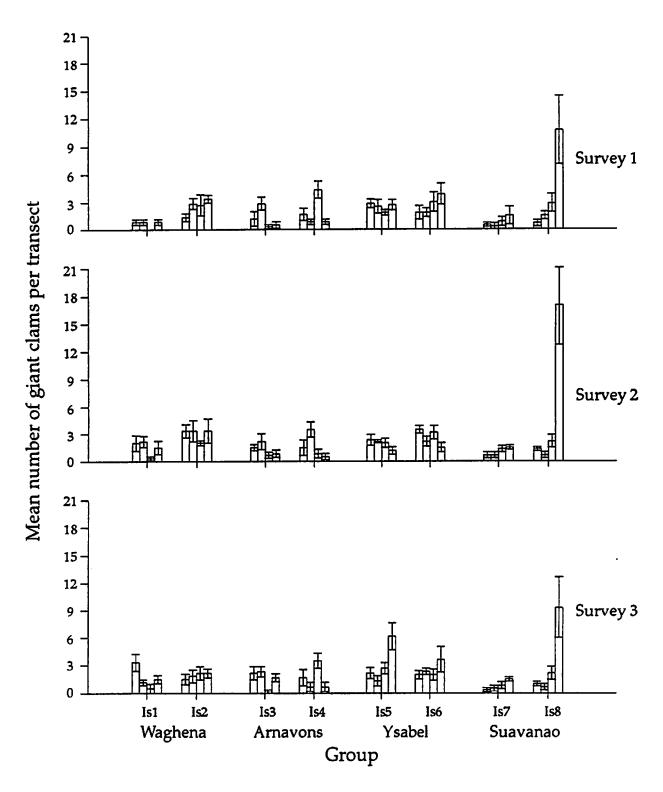


Figure 4 Mean number (+/-SE; n = 6) of giant clams for each of four sites at two islands (Is1 - Is8) within four groups in the shallow habitat for each survey. Site numbers (S1 - S32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

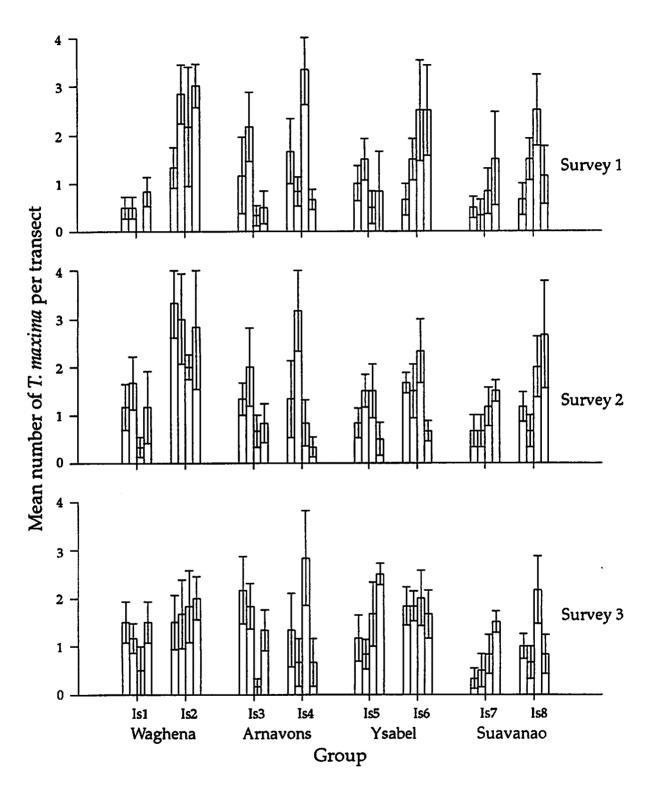


Figure 5 Mean number (+/-SE; n=6) of *Tridacna maxima* for each of four sites at two islands (Is1 - Is8) within four groups in the shallow habitat for each survey. Site numbers (S1 - S32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

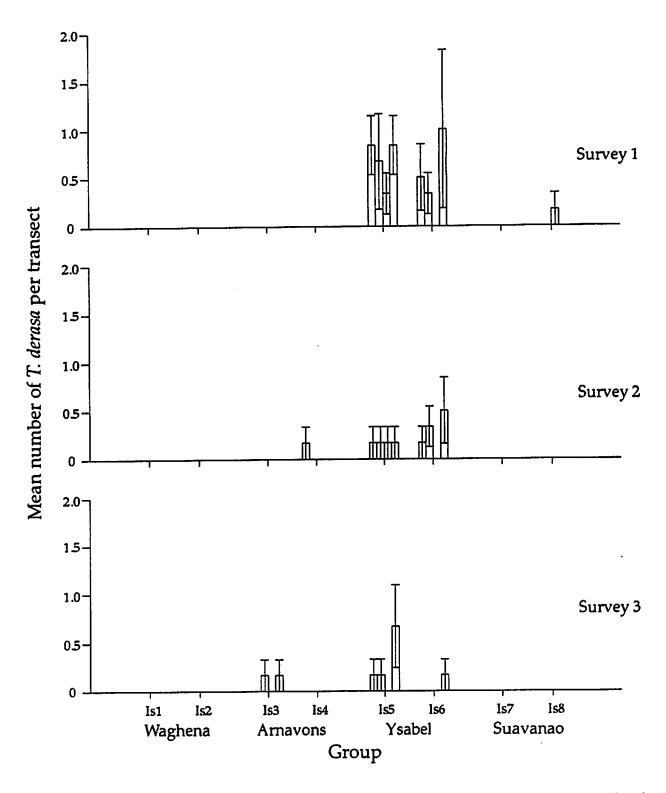


Figure 6 Mean number (+/-SE; n = 6) of *Tridacna derasa* for each of four sites at two islands (Is1-Is8) within four areas in the shallow habitat for each survey. Site numbers (S1-S32) are presented in ascending order from left to right, thus Sites 1 to 4 in Is1, 5-8 in Is2 etc.

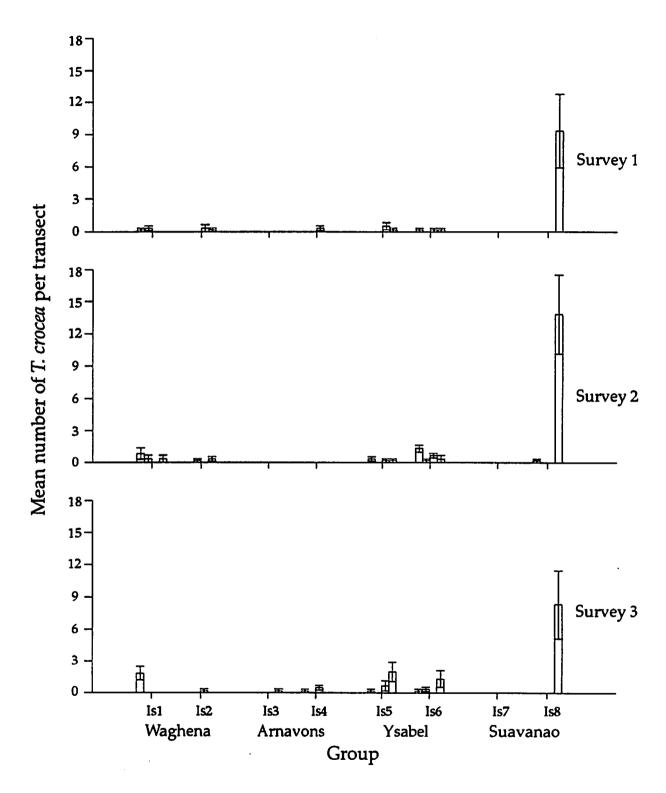


Figure 7 Mean number (+/-SE; n = 6) of *Tridacna crocea* for each of four sites at two islands (Is1 - Is8) within four areas in the shallow habitat for each survey. Site numbers (S1 - S32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

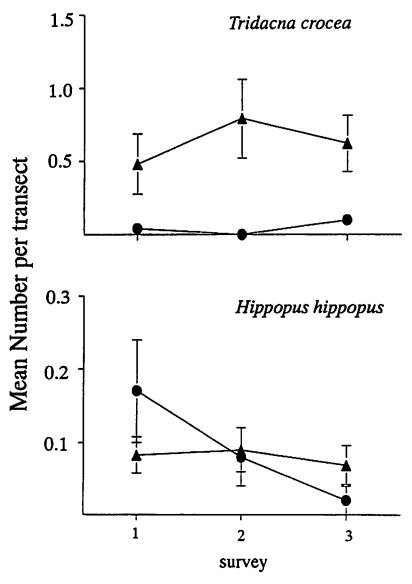


Figure 8 Mean number (+/- SE) of two species of giant clams from the shallow habitat within Arnavon Islands Marine Conservation Area (n=48) and reference groups (n=144) for the Surveys 1-3. \blacksquare MCA (Arnarvon), \blacktriangle Reference groups.

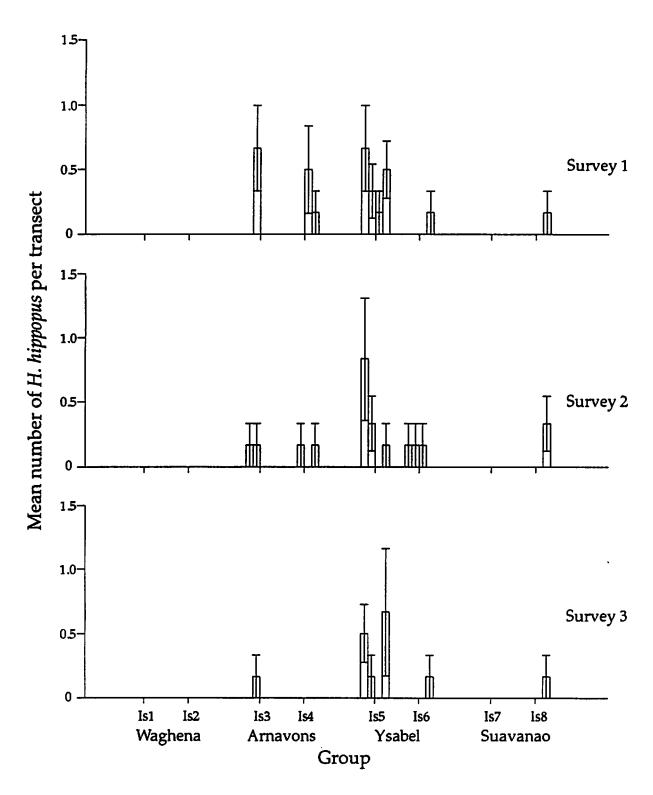


Figure 9 Mean number (+/-SE; n = 6) of Hippopus hippopus for each of four sites at two islands (Is1 - Is8) within four groups in the shallow habitat for each survey. Site numbers (S1 - S32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

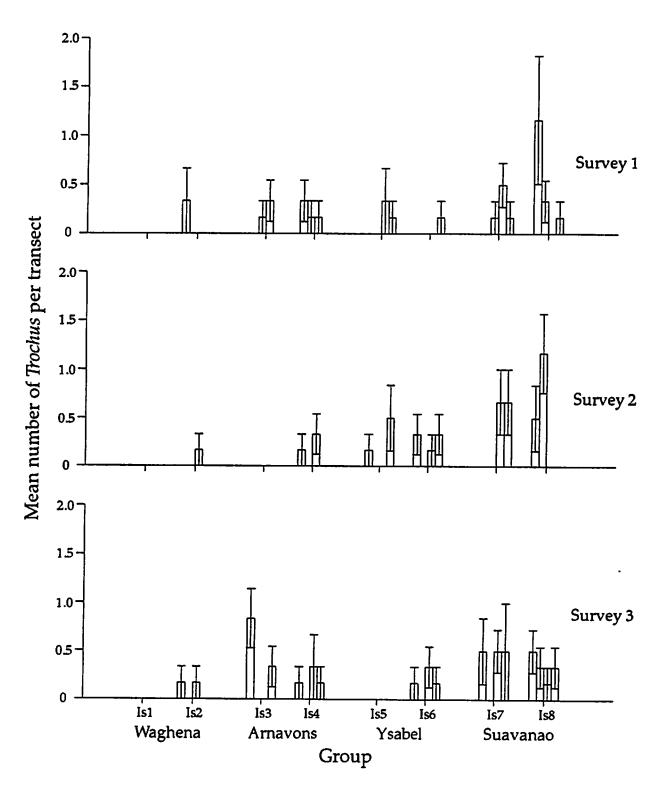


Figure 10 Mean number (+/-SE; n=6) of *Trochus niloticus* for each of four sites at two islands (Is1 - Is8) within four groups in the shallow habitat for each survey. Site numbers (S1 - S32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

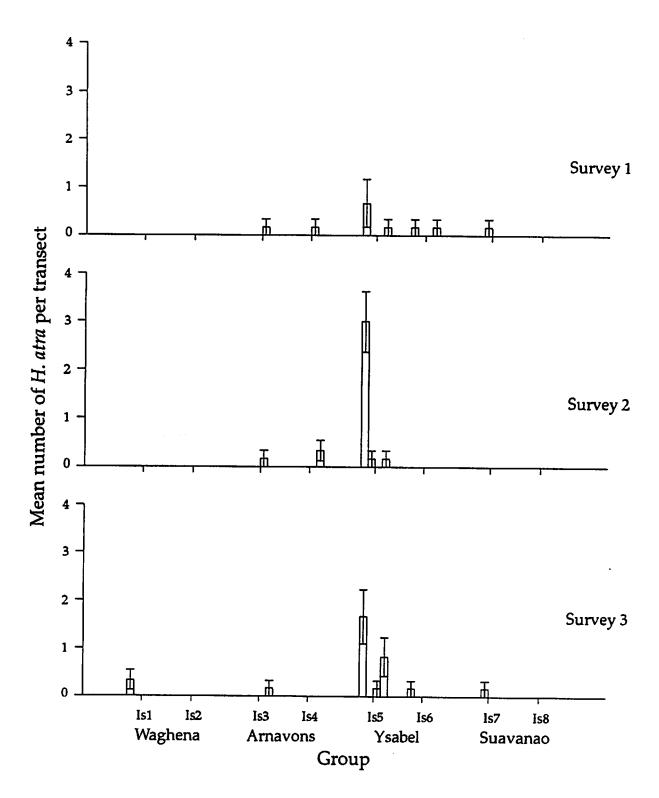


Figure 11 Mean number (+/-SE; n=6) of *Holothuria atra* for each of four sites at two islands (Is1 - Is8) within four groups in the shallow habitat for each survey. Site numbers (S1 - S32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

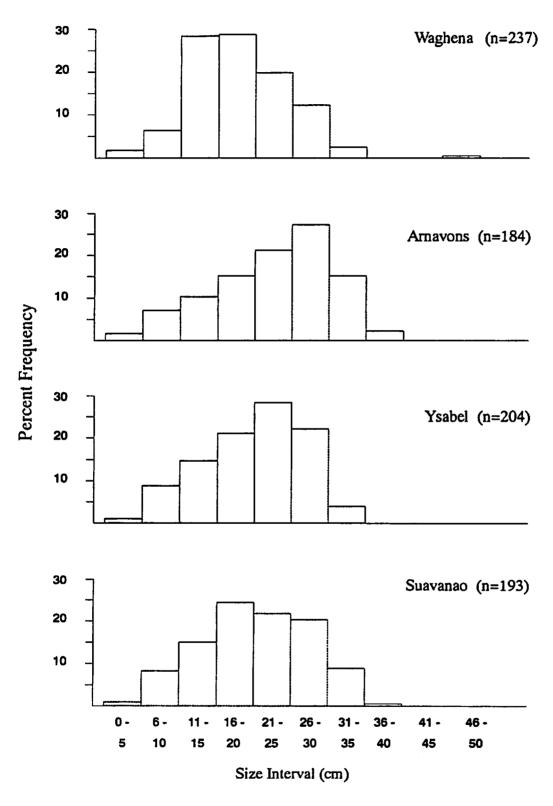


Figure 12 Length-frequency distributions of *Tridacna maxima* from the shallow habitat for each group.

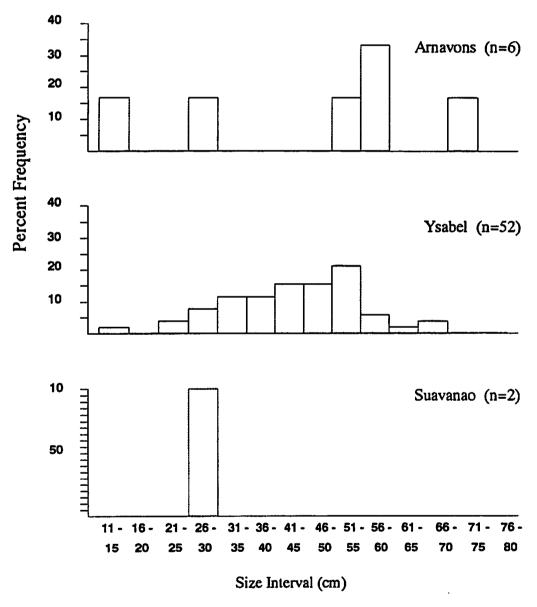


Figure 13 Length-frequency distributions of *Tridacna derasa* from the shallow habitat for each group. Note: No *Tridacna derasa* were recorded at Waghena.

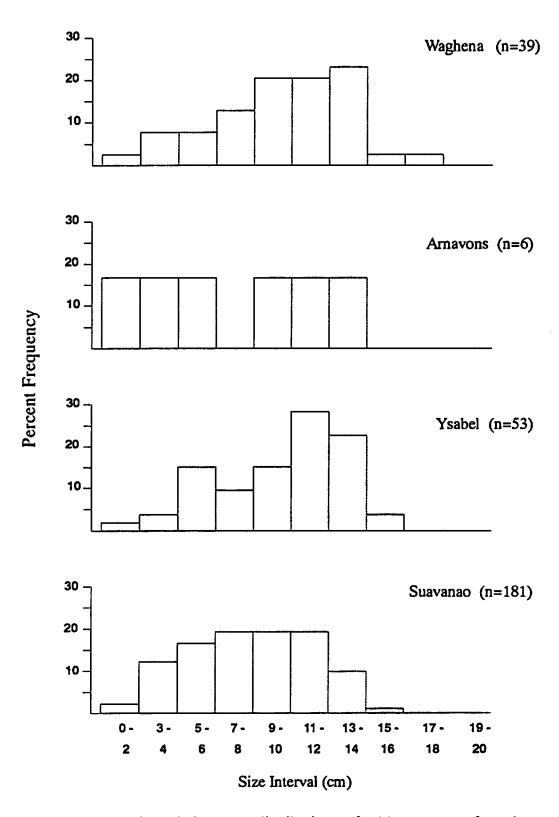


Figure 14 Length-frequency distributions of *Tridacna crocea* from the shallow habitat for each group.

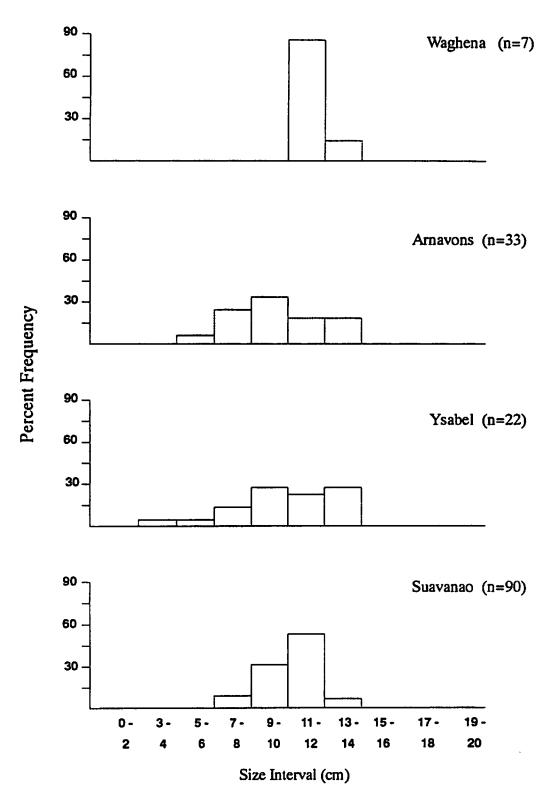
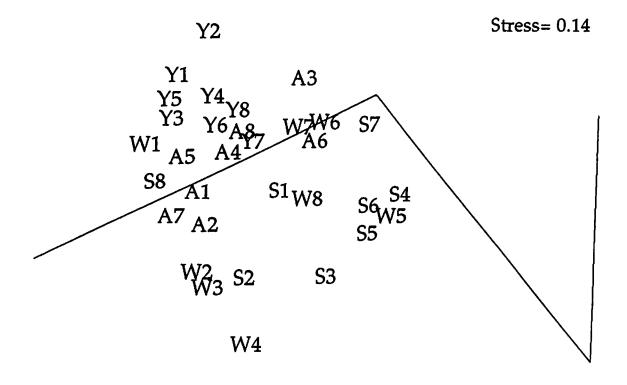



Figure 15 Length-frequency distributions of *Trochus niloticus* from the shallow habitat for each group.

LEGEND

A= Anarvons

S= Suavanao

Y= Ysabel

W= Waghena

Sites within each area: 1-8

Figure 16 Three dimensional MDS plot of habitat variables (% cover) among all Sites and Groups sampled in the shallow habitat (n=32). Replicates (n=4) were pooled over sites.

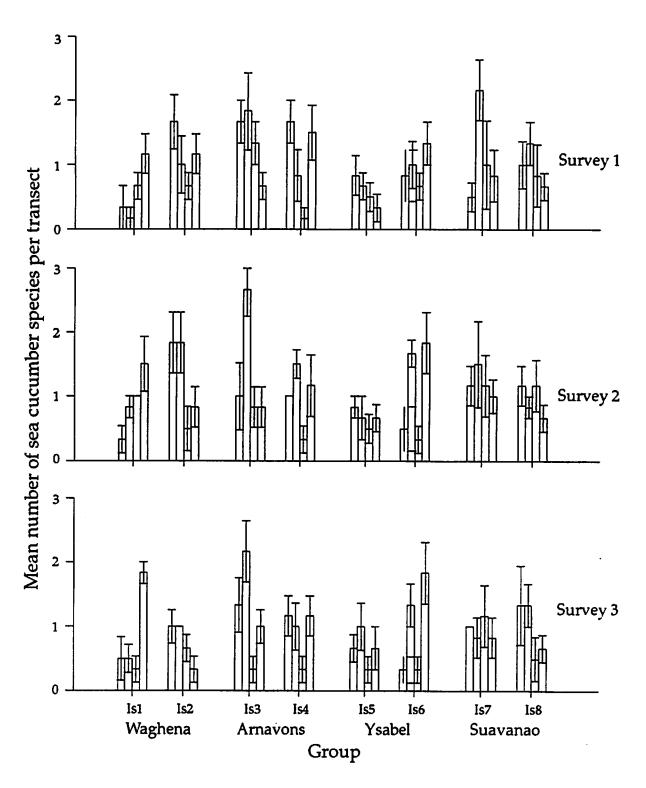


Figure 17 Mean number (+/-SE; n=6) of species of sea cucumbers for each of four sites at two islands (Is1 - Is8) within four groups in the deep habitat for each survey. Site numbers (D1 -D32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

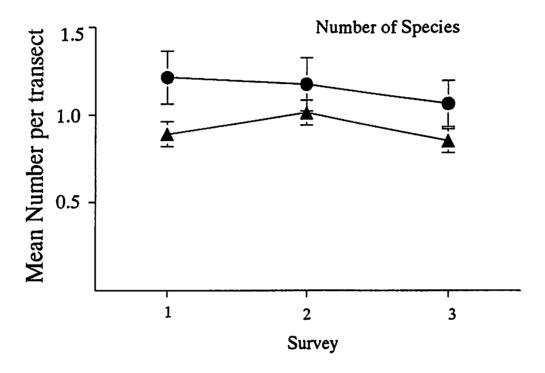


Figure 18 Mean number (+/- SE) of species of sea cucumbers from the deep habitat for the Arnavon Islands Marine Conservation Area (n=48) and reference groups (n=144) for the first three surveys. lacktriangle MCA (Arnavon), lacktriangle Reference groups.

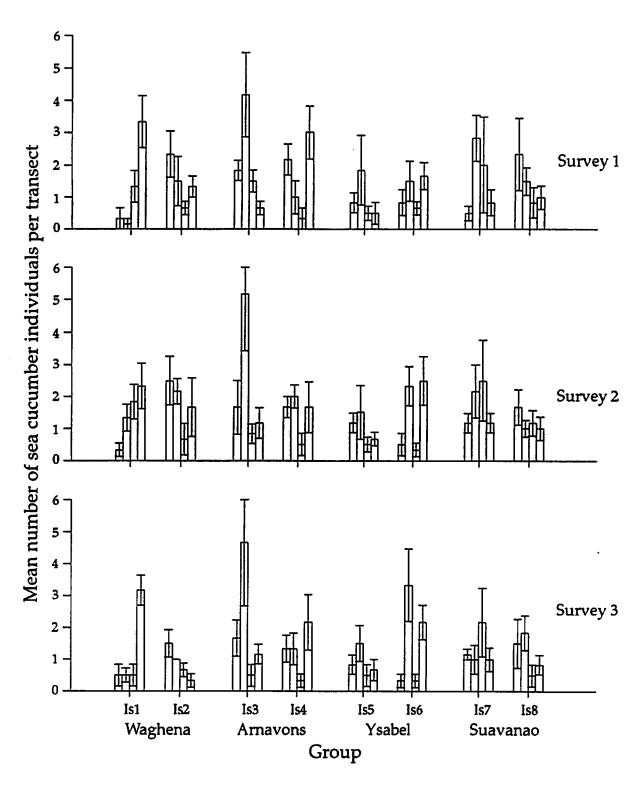


Figure 19 Mean number (+/-SE; n=6) of individuals of sea cucumbers for each of four sites at two islands (Is1 - Is8) within four groups in the deep habitat for each survey. Site numbers (D1 - D32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2.

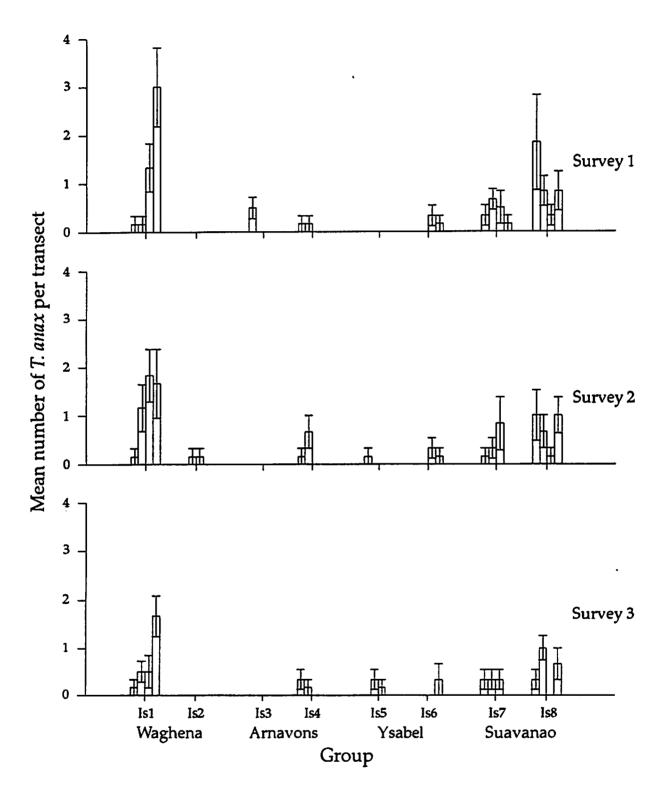


Figure 20 Mean number (+/-SE; n=6) of *Thelanota anax* for each of four sites at two islands (Is1 - Is8) within four groups in the deep habitat for each survey. Site numbers (D1 - D32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

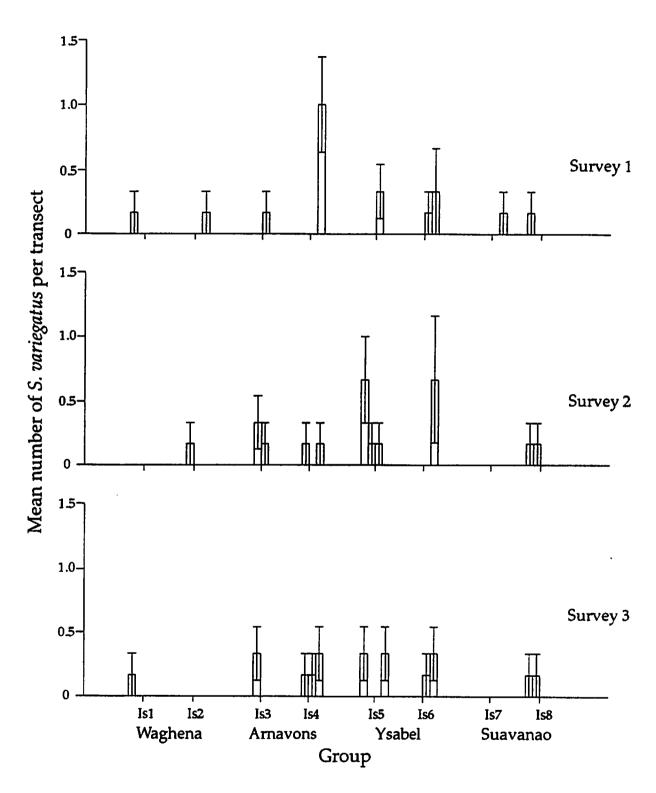


Figure 21 Mean number (+/-SE; n=6) of Stichopus variegatus for each of four sites at two islands (Is1 - Is8) within four groups in the deep habitat for each survey. Site numbers (D1 - D32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

Figure 22 Mean number (+/-SE; n=6) of Holothuria edulis for each of four sites at two islands (Is1 - Is8) within four groups in the deep habitat for each survey. Site numbers (D1 - D32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

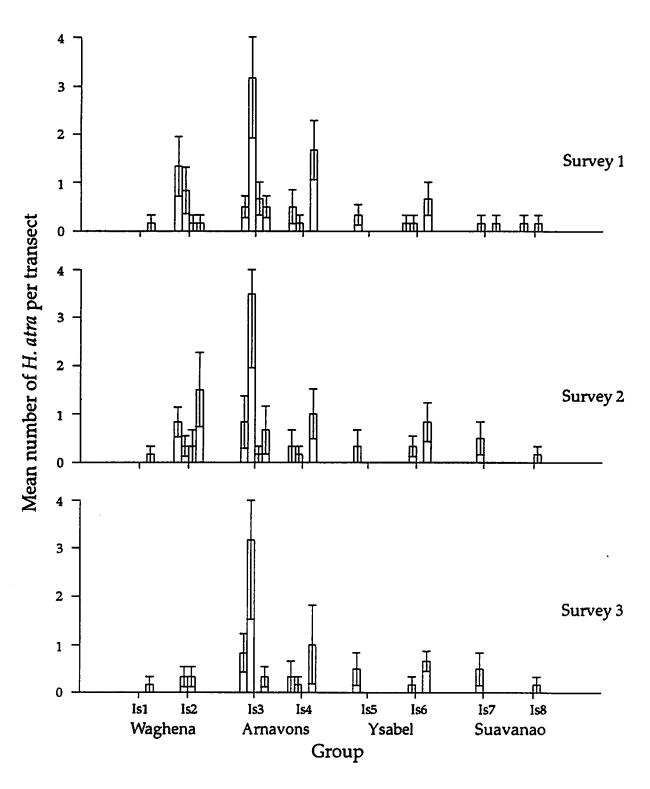


Figure 23 Mean number (+/-SE; n = 6) of *Holothuria atra* for each of four sites at two islands (Is1 - Is8) within four groups in the deep habitat for each survey. Site numbers (D1 - D32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

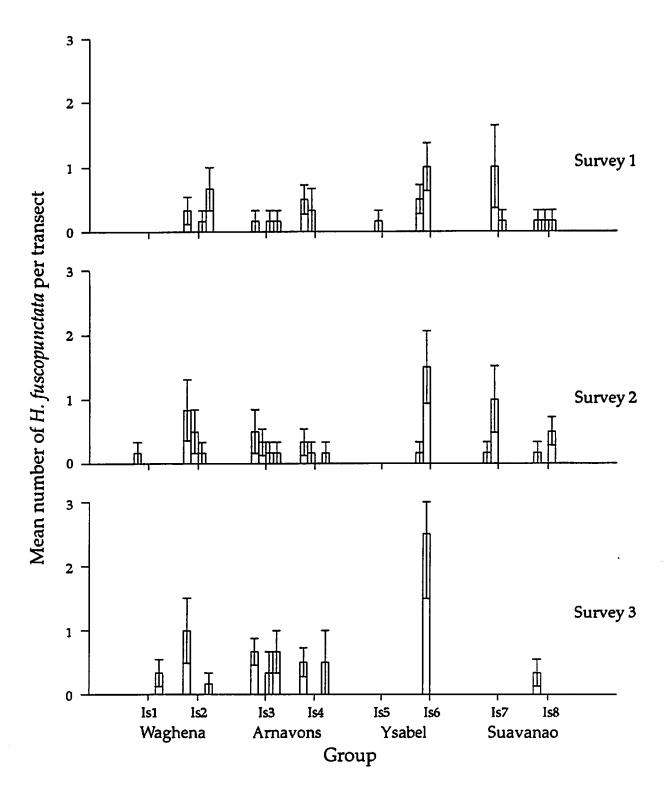


Figure 24 Mean number (+/-SE; n=6) of Holothuria fuscopunctata for each of four sites at two islands (Is1 - Is8) within four groups in the deep habitat for each survey. Site numbers (D1 - D32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

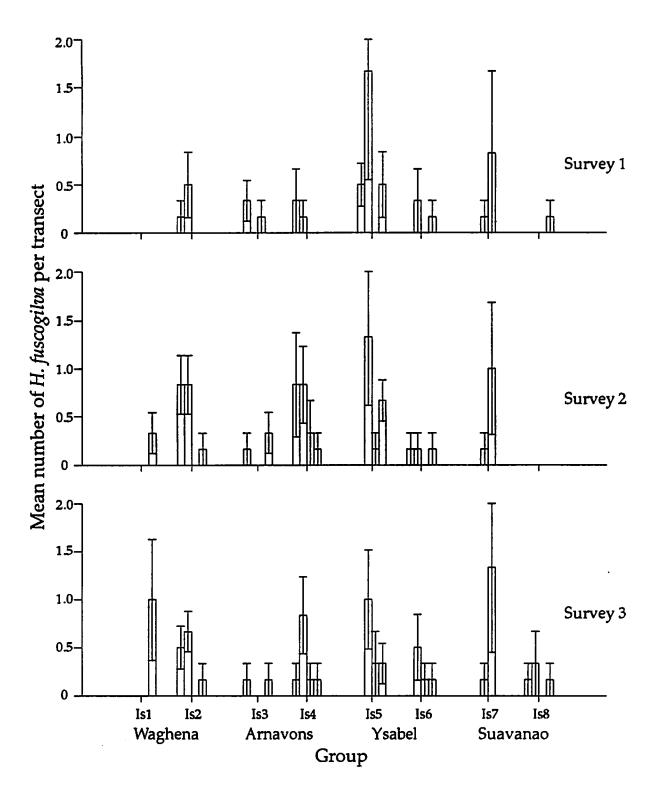


Figure 25 Mean number (+/- SE; n = 6) of *Holothuria fuscogilva* for each of four sites at two islands (Is1 - Is8) within four groups in the deep habitat for each survey. Site numbers (D1 - D32) are presented in ascending order from left to right, thus, Sites 1 to 4 are in Is1, 5-8 in Is2 etc.

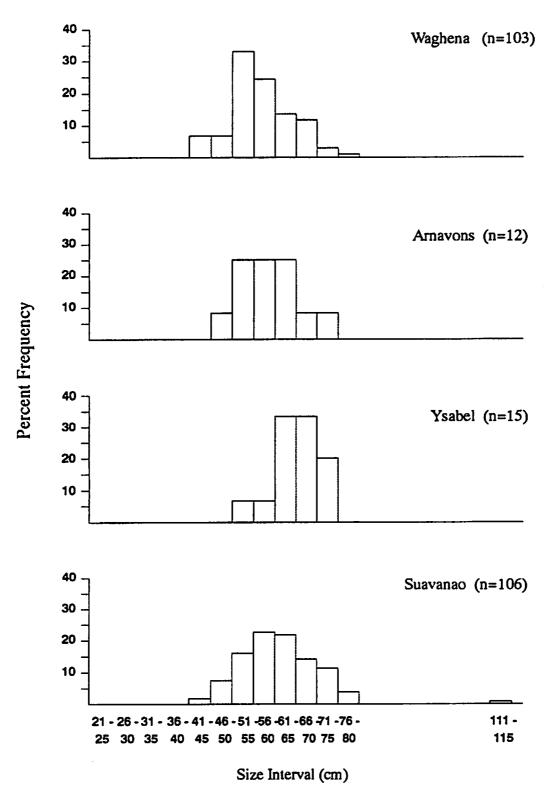


Figure 26 Length-frequency distributions of *Thelanota anax* from the deep habitat for each group.

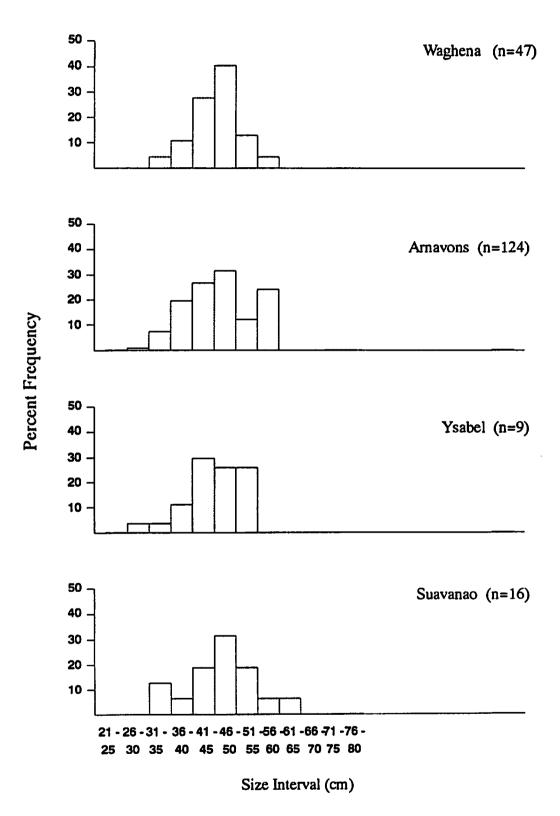


Figure 27 Length-frequency distributions of *Holothuria atra* from the deep habitat for each group.

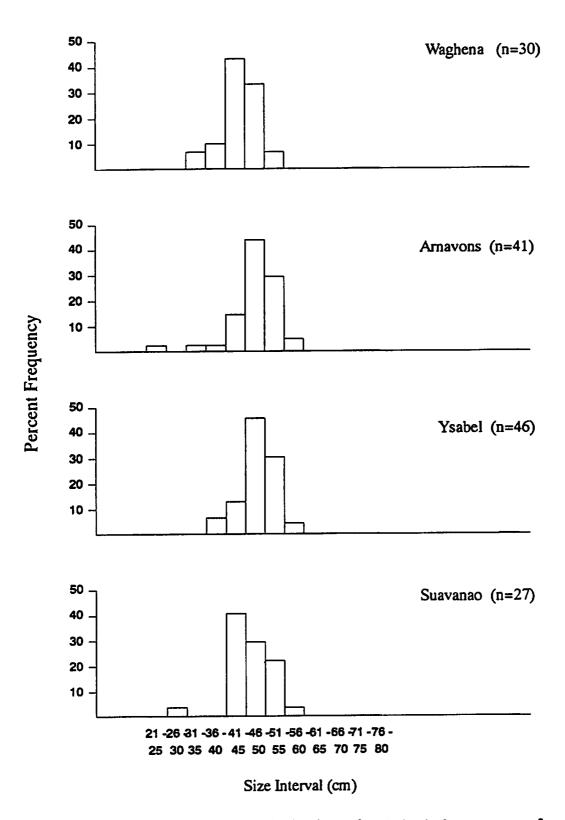


Figure 28 Length-frequency distributions of *Holothuria fuscopunctata* from the deep habitat for each group.

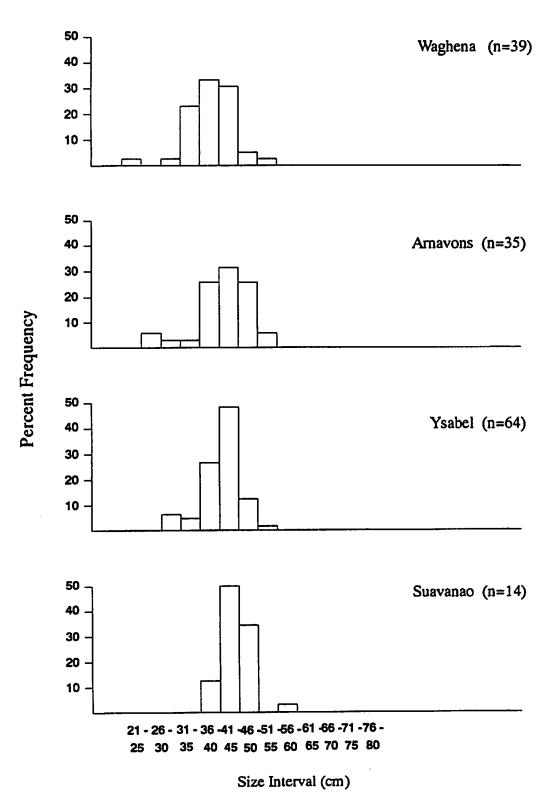
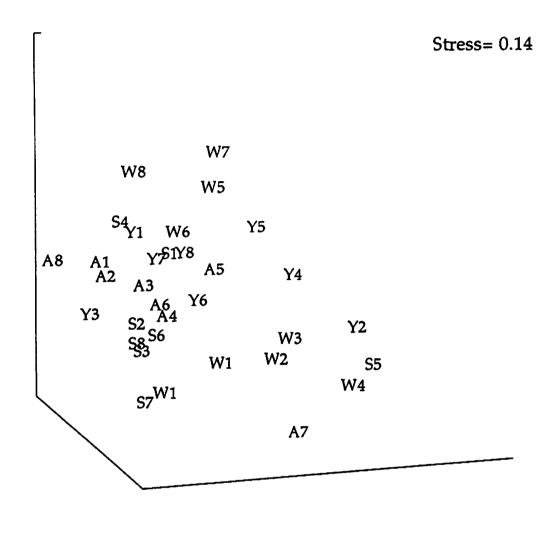



Figure 29 Length-frequency distributions of *Holothuria fuscogilva* from the deep habitat for each group.

,

LEGEND

A= Anarvons

S= Suavanao

Y= Ysabel

W= Waghena

Sites within each area: 1-8

Figure 30 Three dimensional MDS plot of habitat variables (% cover) among all Sites and Groups sampled in the deep habitat (n=32). Replicates (n=4) were pooled over sites.

APPENDICES

Appendix 1. GPS positions (Latitude and Longitude) for all Sites.

APPENDIX 1. Latitude & Longitude for each sampling site, measured using a Global Positioning System (GPS).

1. Shallow Habitat

Group	Island	Site	Lat. (South)	Long. (East)
Waghena	1	S1	7° 31' 05"	157° 43' 48"
		S2	7° 31' 13"	157° 43' 02"
		S3	7° 32' 26"	157° 42' 46"
		S4	7° 30' 55"	157° 43' 16"
	2	S5	7° 28' 56"	157° 49' 37"
		S6	7° 29' 04"	157° 50' 09"
		S7	7° 29' 19"	157° 50' 43"
		S8	7° 29' 15"	157° 51' 00"
Arnavons	3	S9	7° 26' 54"	157° 59' 14"
		S10	7° 26' 35"	157° 58' 59"
		S11	7° 26' 16"	157° 58' 59"
		S12	7° 27' 18"	157° 59' 38"
	4	S13	7° 28' 13"	158° 03' 03"
		S14	7°29' 09"	158° 02' 50"
		S 15	7° 28' 48"	158° 03' 02"
		S 16	7° 26' 58"	158° 02' 12"
Ysabel	5	S17	7° 22' 57"	158° 05' 52"
		S18	7° 22' 45"	158° 05' 10"
		S 19	7° 22' 00"	158° 04' 42"
		S20	7° 22' 00"	158° 04' 39"
	6	S21	7° 23' 25"	158° 09' 04"
		S22	7° 24' 01"	158° 09' 53"
		S23	7° 24' 01"	158° 09' 53"
		S24	7° 23' 57"	158° 09' 20"
Suavanao	7	S25	7° 36' 42"	158° 47' 22"
		S26	7° 37' 15"	158° 47' 23"
		S27	7° 36' 37"	158° 49' 43"
		S28	7° 35' 52"	158° 49' 52"
	8	S29	7° 30' 21"	158° 42' 16"
		S30	7° 29' 48"	158° 42' 30"
		S31	7° 29' 49"	158° 40' 15"
	_	S32	7° 30' 25"	158° 39' 40"

2. Deep Habitat

Long. (East)	Lat. (South)	Site	busizi	Deep Habita
122, 43, 41	ى 31، 90،	DI	Į į	
121° 42' 57"	ک 30، 55،	DS		
122, 45, 46"	۷۰ 35، 50،،	D3		
121° 42' 25"	الم 35، 38،	D4		
121° 49° 37"	ــك 87، 95،	DS	7	
121° 50° 11"	ىك 52، 02،	De		
121. 20, 43"	ک 55، 38 س	Lα		
121. 20. 22.	L 53, 16"	D8		
121° 59° 45°	uT2 ,∠Z o∠	D6	3	
121° 59° 26°	له ۲۲، 90	D10		
121° 58° 46"	Jo 56, 24"	DII		
121° 59° 02"	Jo 79, 7211	DIS		
128° 02' 56"	7° 28' 13"	DI3	Þ	
128, 05, 40	٦ 38، 90 س	DI¢		
128, 05, 12,,	T 27, 25"	DIS		
128° 02° 38"	7° 27' 42"	D 16		
728° 05° 56"	ک ۲۵، ۶۶۳	LIG	ς	
128, 00, 50,	له ۲۲، ۲۶۵	D18		
128, 00, 42,,	که ۲۵، ۵۵،	D16		
128, 00, 32,,	۷۰ ۲۵، ۹۵٬۱	D50		
128° 08' 52"	٧٠ ٦٤، ٤٥،،	DSI	9	
128° 09' 09"	ا کے 53، 60،،	DSS		
128, 00, 10,	الم 22، 49،	DS3		
128, 09, 20,	L 53, 21.	D54		
128. 47. 00	.2e .9e ₄∠	DS2	L	
128. 41. 21.	1,98,19,	D76		
128, 46, 90"	7° 34° 53"	LZQ		
128, 46, 36"	.SE .9E .∠	D78		
128, 40, 24,,	7 29' 51"	D59	8	
128, 39, 31,	٦ ٢٥٠ ع١،	D30		
128, 33, 21,	ک 30، 27 _"	D31		

Appendix 2. Abundance and length frequency data for all Sites during Surveys 1 - 3.

Shallow, Survey 1, abundance

Appendix 2a. Raw data for shallow habitat, Survey 1, January/February, 1995. Rep = relicate number, Obs = initials of observer, * indicates uncertain identification

	Waghena	Group
10	.	Island Site
S8 S7 S6 S5 S4 S3 S2	S	
5 PR 6 PR 6 PR 1 PR 2 PR 2 PR 3 PR 6 NK 6 NK 6 NK 7	3 NK	Rep Obs
בן ב בב (פענאטע בור פער מען אין בער	-	Tridaena maxima
	-	Tridocno gigas
		Tridacna derasa
مور سو		Tridocno sqamosa
- to		Tridacna crocea
		Hippopus hippopus
		Stichopus chloronotus
ψ μ		Bohadschia graeffei G.
		Bohadschia agrus
		Holothuria atra
-		Actinopyga mauritaniana
₽		Brown stonefish *
- 1000 10 10 10 10 10 10 10 10 10 10 10 1		Tectus pyramis
N		Trochus niloticus
-		Pinctada margaritifera ⊷
111144111000000000000000000000000000000	12 m m	Total

Ysahel	Amavons	
v.	<u>।</u> ≅	
S17	S16 S14 S13 S10 S10 Rep	
1 PR 2 PR 4 NK 5 NK	5 4 4 7 P R R R R R R R R R R R R R R R R R R	
12 12 12 12	Tridacna maxima	
-	Tridocna gigas	
 ()	Tridacna derasa	•
L	Tridacna sqamosa	
	Tridacna crocea	
н н 2	אר בי אין llippopus hippopus אויך אין אויך אויך אויך אויך אויך אויך אויך אויך	
	1 ω τν	
	Bohadschia graeffei Ω .	
-	Bohadschia agrus	
<u>-</u> ω	Liolothuria atra	
	L L L Actinopyga mauritaniana	
	Brown stonefish *	
Jaco	ш ш идидругатіз — и и и и и и и и и пести ругатіз	
	Trochus niloticus	
	Pinctada margaritifera	
w 2 2 4 4 u	Total 10	

Group	Island	Site	Rep Obs		·					S	pecies							7	Total
				Tridacna maxima	lridacna gigas	Tridacna derasa	Tridocna sqamosa	Tridacna crocea	Hippopus hippopus	Sichopus chloronotus	Bohadschia graessei	Bohadichia agrus	Holothuria atra	Actinopygo mounitaniano	Brown stonefish *	Techus pyramis	Trochus niloticus	Pincieda margoritifera	
		S18	1 PR	1	<u> </u>	1		<u> </u>		<u>v</u>	2				<u> </u>	1			5
			2 PR													1			1
			3 PR	2						1	_							1	4
			4 NK	3		_			1		2								6
			5 NK 6 NK	1 2		3			1							1			6 2
		S19	1 NK	1				1		1									3
		319	2 NK	•				2		•						1			3 3 2 5
			3 NK	2				~								•			2
			4 PR	-	1					1						1	2		5
			5 PR			1	1		1							1			4
			6 PR			1													1
		S20	1 PR			2			1										
			2 PR	5													1		3 6 2 2 2 2 5
			3 PR			1			1										2
			4 NK			1			1	_									2
			5 NK					1		1			_						2
	4	621	6 NK 1 PR	•	1	1	1			1	,		1						5
	6	S21	2 PR	2 1	1						1					1			4
			3 PR	1		2	2				2					1 1			2 8 3 3
			4 NK	•		_	_	1			-					2			3
			5 NK					•								3			3
			6 NK			1					1		1			1			4
		S22	1 PR	1												1			2
			2 PR			1													1
			3 PR	1						2						2			5
			4 NK	2								1				5			8
			5 NK	3		1										4			8
		Caa	6 NK	2												2			4
		S23	1 NK 2 NK	7	1					•									8
			2 NK 3 NK	1 3						1									2
			4 PR	3												4		•	7 4
			5 PR				1	1								2			4
			6 PR	1			_	-								4			5
		S24	1 NK	4					1			1				·			6
			2 NK	1		5										1			7
			3 NK	1												2			3
			4 PR	6				1											7
			5 PR	•									1			5			6
Suavanao	7	S25	6 PR 1 PR	3 1		1										4	1		9
Juavauau	,	ليدو	2 PR	1												2			3
			3 PR	1												1			4
			4 NK	-												3			2
			5 NK	1												3			4
			6 NK													-			0
		S26	1 MLS														1		1
			2 MLS	_															0
			3 MLS	2															2
			4 PR 5 PR																0
			6 PR										1						1
			ork																0

Total																																											Group	
																												∞															Island Site	
						0	S32							S31							S30							S29						V 12	3						S27			
		N Z	5 NK	4 NK	3 PK			6 NK	5 NK			3 PR	2 PR	1 PR	6 NK				2 PR		1 PR	6 PR	0 FX			Z Z Z		1 NK	6 PR		4 PR		12 NK		OPK		5 PR		3 ML	2 M L	1 MLS		Rep Obs	
251			—	_	4	 -			5	4		L.				- 2	, ,	•		2	_		-	٠.	_			12	_			0	, 13	•	-	•			w	S	S	Tridacna maxima		
٥																																										Tridacna gigas		
28									_																																	Tridacno derasa		۱,
10									-																																	Tridacna sqamosa		
71	-	_	15	23	v	ויי	,																																			Tridaena erocea		
20																																										Hippopus hippopus		3
23																																										Stichopus chloronotus	S	
24			-																				-			_																Bohadschia graeffei	Species	
6																																										Bohadschia agrus		ì
10																																										Holothuria atra		
10																																	_									Actinopyga mauritaniana		İ
2																																										Brown stonelish *		
167	-	_	12	12		ı		2	_	_	. t	2				_		•				_	_	۰ ۱-	- 1	.				IJ												Tectus pyramis	ı	
28		1	_																	_	_	_			4	b. 1	N		_						_	٠.	_			_		Trochus niloticus		
w																																										Pinctada margaritifera		
659	t	.	20	ಜ	14	. j	4	w	œ	U	n (۸.	-	-	_	t ul	·		- •	دم	2	2	Ç.		.	.	w	2	2	2	0	6	w	0	, ₁ 2	, ,	- د	> 1	، بر	_	_		Total	

Shallow, Survey 1, Length data

Appendix 2b. Length-frequency data for shallow habitat, Survey 1, January/February 1995 Specimen = replicate, * indicates uncertain identification.

Waghena	I cens pyrams Trochus niloticus Pinctada margaritifea
Waghena S1	
3 MLS 31.5 4 PR 16.5 14.0 5 PR 28.0 6 NK 28.0 44.5 36.0 7 NK 33.5 S2 1 MLS 10.0 35.5 S2 PR 15.0 13.0 3 PR 27.0 8.0 4 NK 21.0 S4 1 MLS 15.0 32.0 MEASUREMENTS) 3 PR 33.5 FR 34.0 4 PR 34.5 5 PR 38.0 6 NK 14.5 7 NK 11.5 8 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
4 PR 16.5 14.0 5 PR 28.0 6 NK 28.0 44.5 36.0 7 NK 33.5 S2 1 MLS 10.0 35.5 2 PR 15.0 13.0 3 PR 27.0 8.0 4 NK 21.0 S4 1 MLS 15.0 15.0 28.0 (S3 NO 2 PR 34.0 4 PR 34.5 5 PR 38.0 6 NK 14.0 7 NK 11.5 8 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
5 PR 28.0 6 NK 28.0 44.5 36.0 7 NK 33.5 S2 1 MLS 10.0 35.5 2 PR 15.0 13.0 3 PR 27.0 8.0 4 NK 21.0 S4 1 MLS 15.0 15.0 28.0 (S3 NO 2 PR 32.0 MEASUREMENTS) 3 PR 34.5 5 PR 34.5 5 PR 34.5 6 NK 14.0 7 NK 11.5 8 NK 14.5 2 S5 1 MLS 20.0 12.5 3 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
6 NK 28.0 44.5 36.0 33.5 S2 1 MLS 10.0 35.5 2 PR 15.0 13.0 35.5 3 PR 27.0 8.0 4 NK 21.0 S4 1 MLS 15.0 32.0 MEASUREMENTS) 3 PR 34.5 5 PR 34.5 5 PR 38.0 6 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
S2 1 MLS 10.0 35.5 2 PR 15.0 13.0 3.0 3 PR 27.0 8.0 4 NK 21.0 S4 1 MLS 15.0 15.0 28.0 (S) NO 2 PR 32.0 MEASUREMENTS) 3 PR 43.0 4 PR 34.5 5 PR 34.5 6 NK 14.0 7 NK 11.5 8 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 18.0	
2 PR 15.0 13.0 8.0 4 NK 21.0 54 NK 21.0 55 NC 15.0 15.0 28.0 28.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51	
3 PR 27.0 8.0 4 NK 21.0 S4 1 MLS 15.0 28.0 (S3 NO 2 PR 32.0 MEASUREMENTS) 3 PR 43.0 4 PR 34.5 5 PR 38.0 6 NK 14.0 7 NK 11.5 8 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 2 6.5 11 PR 20.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
S4 1 MLS 15.0 28.0 (S3 NO 2 PR 32.0 MEASUREMENTS) 3 PR 43.0 4 PR 34.5 5 PR 34.5 6 NK 14.0 7 NK 11.5 8 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
S4 1 MLS 15.0 28.0 (S3 NO 2 PR 32.0 MEASUREMENTS) 3 PR 43.0 4 PR 34.5 5 PR 38.0 6 NK 14.0 7 NK 11.5 8 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
MEASUREMENTS) 3 PR 4 PR 5 PR 6 NK 14.0 7 NK 11.5 8 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
4 PR 34.5 5 PR 38.0 6 NK 14.0 7 NK 11.5 8 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
5 PR	
6 NK 14.0 7 NK 11.5 8 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
7 NK 11.5 8 NK 14.5 2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
2 S5 1 MLS 18.0 11.0 2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
2 MLS 20.0 12.5 3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
3 MLS 10.5 4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
4 MLS 10.5 5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
5 MLS 8.0 6 NK 24.0 7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
7 NK 29.0 8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
8 NK 18.0 9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
9 NK 12.5 10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
10 PR 15.0 8.5 26.5 11 PR 20.5 12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	
12 PR 50.0 13 PR 14.0 S6 1 MLS 25.0	. 12.5
13 PR 14.0 S6 1 MLS 25.0	10.5
S6 1 MLS 25.0	
2 MLS 7.0	
3 MLS 17.0	
4 MLS 8.0	
5 MLS 13.0 6 MLS 17.0	
7 MLS 17.0	
8 PR 9.0	11.5
9 PR 22.0	
10 PR 22.0	
11 PR 18.0 12 PR 5.0	
12 FR 3.0 13 PR 30.0	
14 PR 30.0	
15 PR 24.0	
16 PR 14.0	
17 PR 25.0 18 PR 22.0	
S7 1 MLS 30.0	

Group	Island	Site	Specimen	Observer							S	pecies				· · · · ·			
			7 Number varies by site		Tridacna mazima	Tridacna gigas	Tridoena derasa	Tridocna sqamosa	Tridaena erocea	Hippopus hippopus	Stichopus chloronotus	Bohadschia graeffei	Bohadschia agrus	Holothuria atra	Actinopyga maunitaniana	Brown stonefish *	Techus pyramis	Irochus miloticus	Pinctada margaritifera
	-			MLS	30.0														
			3 4	MLS MLS	12.5 31.0														
			5	MLS	19.5														
			6	NK	24.5														
			7	NK	17.0														
			8	NK	24.0														
			9	NK NK	7.0														
			10 11	NK NK	18.5 24.0														
			12	NK	18.0														
			13	NK	13.5														
			14	NK	23.5														
			15	NK	10.5														
			16 17	NK PR	23.5 9.5			18.0	10.0										
			18	PR	13.0			10.0	7.5										
		S8		MLS														11.5	
			2	NK	19.5			13.0	13.0							33.0			
			3	NK	4.5														
			4 5	NK NK	12.0 28.5														
			5 6	NK	6.5														
			7	NK	30.5														
			8	NK	20.5														
			9	NK	13.5														
			10 11	PR PR	32.0 18.0														
			12	PR	25.0														
			13	PR	16.5														
			14	PR	22.5														
			15	PR	16.0														
			16	PR	9.0 15.5												•		
			17 18	PR PR	15.5 12.5														
			19	PR	15.0														
Amavons		3 S	1	MLS	22.0		70.5												
			2	MLS	33.5														
			3	MLS	34.5														
			4 5	MLS MLS	34.5 30.5														
			6	NK	29.0														
			7	NK	20.0														
			8	NK	29.5														
			9	NK NK	24.0														
		S16	10 0 1	NK MLS	28.0 29.5			46.0	14.5					39.5					
		21/	2	MLS	25.0				•••					24.5					
			3	MLS	27.5														
			4	MLS	23.5														
			5 6	MLS MLS	19.0 23.5														
			7	MLS	32.0														
			,	141172	ں، نے تے														

Group	Island	Site	Specimen	Observer			-				5	Species							
			n by site		ima	2	9.5	m034	000	smdod	loronotus	raessei	18rus	fra	Actinopyga mouritaniana	• hs	-2	nicus	rgaritifera
			Number varies by site		Tridacna maxima	Tridacna gigas	Tridacna derasa	Iridacna sqamosa	Tridaena crocea	Hippopus hippopus	Stichopus chloronotus	Bohadschia graeffei	Bohadschia egrus	Holothuria atra	ctinopyga n	Brown stancfish	Tectus pyramis	Trochus nilonicus	Pinclada margaritifera
			9	NK	32.0		- 1	<u> </u>	<u> </u>	45.5								10.5	
			10	NK	32.5					16.0									
		S1:	11	NK MLS	36.0 36.0													10.0	
		51.	1 1 2	MLS	36.0													8.9	
			3	NK	•									36.0					
			4	PR														9.0	
		\$12		NK							29.0		26.0		23.0				
			2 3	PR PR	17.5 28.5								25.0						
			3 4	PR	9.5														
		4 S1		PR	7.4													14.0	
			2	NK														8.0	
			3	MLS	23.5						27.0				24.0				
			4	MLS MLS	22.5 30.0									36.5 32.0	24.0				
			5 6	MLS	26.0									32.5					
			7	MLS	23.0									33.0					
			8	MLS	26.0									34.0					
			9	MLS	36.0														
			10	MLS	25.5														
			11 12	MLS MLS	34.0 28.0														
		S14		PR	20.0													8.0	
			2	PR														12.5	
			3	MLS	26.5		55.5					46.0		30.0					
			4	MLS	29.0						20.0 17.5			29.5 36.0					
			5 6	MLS MLS	32.0 25.5						20.0			28.0					
			7	MLS							19.5			30.5					
			8	MLS										26.0					
			9	MLS										29.0					
			10	MLS										22.0					
		S1:	11 5 1	MLS MLS	7.5		56.0					29.5		32.5	31.0				
		.	2	MLS	29.0		20.0					35.0							
			3	MLS	8.5														
			4	MLS	25.0														
			5 6	MLS	30.0 17.0														
			7	MLS PR	17.0													10.0	
		S16		MLS	26.5						23.5	43.5			28.0	25.5		20.0	
			2	MLS							30.0				24.5				
			3	MLS							29.0				31.5				
			4 5	PR PR	25.0 28.0						27.5 28.0				23.0 34.5				
			5 6	PR	32.5						28.0 18.5				34.3				
			7	PR							26.5								
			8	PR							26.0								
			9	PR	25.0					34.5	18.5								
Ysabel		5 S17	10 7 1	NK MLS	25.0 32.5		67.0		5 N	21.0 45.5	20.0	32.0		35.5					
a outrol	•	. 31	2	MLS	18.0		44.0			35.0		0.00		د.دد					
			3	MLS	22.5		49.5			35.0									

Group	Island	Site	Specimen	Observer							;	Specie	s						
			Number varies by site		Tridecne maxime	Tridocno gigas	Tridocna derasa	Tridaena sqamosa	Tridaena erocea	Hippopus hippopus	Sichopus chloronotus	Bohadschia graeffei	Bohadschia agrus	Holothuria atra	Actinopygo mauritaniana	Brown stanefish •	Tectus pyramis	Trockus niloticus	Pinciada marzaritifera
			4	MLS	17.0		40.0												
			5	MLS	14.3		13.5												
			6 7	MLS PR	25.0		33.0 29.5			26.5			20.0	21.0					
			8	PR	19.0		43.0			31.0			29.0	26.0					
			9	PR			22.0			38.5				29.0					
			10	PR						36.5									
			11	NK		49.0								46.0					
			12	NK	24.0		39.0												
			13 14	NK NK	13.0														
		S18		NK MLS	21.0	56.0	33 N			45.5	32.0			49.5					
		510	2	MLS	10.5		52.0				30.5			47.5					
			3	MLS			59.5			J J .J	50.5								
			4	MLS			46.5												
			5	PR	22.0		38.0				25.0	26.0						12.5	
			6	PR	10.0							28.5							
			7	PR	31.0														
			8	NK	28.0		28.0			32.0									
			9 10	NK NK	30.5 15.5		70.0 51.0												
		S19		MLS	13.3	52.5	51.0				27.0		47.0	44.5					
			2	MLS							29.0								
			3	MLS							26.5								
			4	NK	13.0				9.0		25.0								
			5	NK	25.0				12.0										
			6	NK BB	30.0	46.0	47.0	20.0	8.5	22.0	22.0								
			7 8	PR PR		40.0	47.0 48.0	39.0		23.0	27.0							12.5 12.5	
	6	S20		MLS	17.5	60.0				32.0	45.5			26.0				12.3	
	_		2	MLS		80.5					21.0			20.0					
			3	MLS		67.0					20.3								
			4	MLS	13.0					31.0	26.5						•		
			5	MLS	20.0														
			6	MLS	27.0		•••			•••									
			7 8	PR PR	18.0		51.0			31.0								10.5	
			9	PR	23.0 25.0		45.0 51.0			28.0									
			10	PR	25.0		.,1.0												
			11	PR	30.0														
			12	NK			34.0	19.5	7.5	24.0	31.0			24.5					
			13	NK			57.0				35.0								
		S21	1	PR		53.5	36.0											12.4	
			2	PR	26.0		35.0	41.0											
			3 4	PR PR	26.0 29.0														
			5	NK	₩7.U		46.0		13.5			15.5		29.0					
		S22		PR	15.0		53.0		•••		24.0								
			2	PR	27.5						22.0								
			3	NK	23.0		32.0						26.0						
			4	NK	12.5														
			5 6	NK NK	12.0 26.0														
			7	NK NK	30.0														
			•																

Group	Island	Site	Specimen	Observer							S	pecies							
			Number varies by site		Tridacna maxima	ŗigas	derasa	Tridacna sqamosa	croced	smiloddin s radoddis	Stichopus chloronotus	Bohadschia graessei	Bohadschia agrus	a atra	Actinopyga mauritaniana	Brown stonefish •	romis	ilońcus	Pinctado margaritifero
			m ber v		idacma	Tridacna gigas	Tridacna derasa	idoena	Tridacna croces	smdodd	ichopus	hodoch	shadsch	Holothuria atra	hinopys	cha awo	Techus pyramis	Trochus niloticus	nctodo
			<u> </u>	NK	20.5	<u>, E</u>	Ę	<u> </u>	<u> </u>	16.	<u> </u>	8	8		<u> </u>	<u> </u>	7	<u> </u>	<u> </u>
			9	NK	24.0														
		S23		NK		49.0					29.0								
			2 3	NK NK	27.0 29.0														
			4	NK	30.0														
			5	NK	20.5														
			6	NK	23.5														
			7	NK	22.5														
			8 9	NK NK	27.0 26.0														
			10	NK NK	24.0														
			11	NK	17.0														
			12	PR	29.0			36.0	12.0										
			13	PR	28.0														
			14	PR	25.0														
Suavanao	-	7 S24	15 1	PR NK	16.0 22.5	95 5				32.0			34.0						
Suavanao	•	324	2	NK	17.0	,,,,				32.0			J4.U						
			3	NK	28.5														
			4	NK	7.5														
			5	PR	12.0		28.0		12.5				:	34.0				12.4	
			6 7	PR PR	20.5 21.0														
			8	PR	14.0														
			9	PR	18.5														
			10	PR	18.0														
			11	PR	24.0														
			12 13	PR PR	25.0 33.0														
		S25	1	PR	30.0														
			2	PR	26.0														
			3	NK	32.0												•		
			4	MLS	16.0								:	26.5				8.4	
		S26	5 1	MLS MLS	39.0													6.5	
		320	2	MLS	34.0													11.8	
			3	PR	<i>p</i> 110								3	32.0					
		S27	1	MLS	27.5													1.5	
			2	MLS	8.0														
			3	MLS	19.5														
			4 5	MLS PR	19.5 25.0													7 0	
			6	PR	٠.٧.٥												,	7.8 1.2	
			7	PR														1.2	
			8	PR													1	1.6	
			9	PR													1	2.3	
			10 11	PR PR														1.4	
			12	PR														1.4 1.0	
			13	PR														1.5	
			14	PR														1.2	
			15	PR													1	1.2	
			16	PR													1	0.6	

				Group
S31			10	Island Site
	S30		S29	&
5 6 6 7 10 11 11 11 10 8 8 7 6 8 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	20 21 22 3	7 9 9 110 111 112 113 114 115 116 117	1 E 4 S O C 8 O C C S A S O	Number varies by site
N N N N N P P P P N N N N N N N N N N N	MIS MIS PR PR	NK PR R R R R R R R R R R R R R R R R R R		Specimen Observer 17 PR 1 NK
25.0 27.0 29.0 29.5 14.5 17.0 26.5 31.0 28.0 28.0 27.0 18.5 16.5	34.0 23.0 28.0 20.0	26.0 23.0 30.5 12.0 33.0 24.0 29.0 29.5	25.0 25.0 32.0 16.0 22.0 34.0	Tridacna maxima Tridacna gigas Tridacna derasa Tridacna sqamosa Tridacna crocea
.,				Tridacna gigas
28.0 44.5				Tridacna derasa
#4.5				Tridaena sqamosa
		14.0 10.5 4.0		Tridacna crocea
				Hippopus kippopus
	ادادادا	natatatatatata	tus.	Stichopus chloronotus
	25.5 27.0 34.0	34.0 34.0 36.0 39.5 38.5 33.5 34.0	33 .5	Bohadschia graessei
				Bohadschia agrus
				Holothuria atra
				Actinopyga mauritaniana
				Brown stonefish *
				Tectus pyramis
œ œ	10.4 11.4 9.0 8.0 8.7 8.8	1125 9.8 9.8 1121 1105 1115 1115 1115 1115 1113 1113 111	9.5 11.5 10.5 10.8 11.5	Trochus niloticus
				Pinctada margaritifera

Group	Island	Site	Specimen	Observer							Sį	pecies					•		
			Number varies by alte		Tridaeno maximo	Tridocna gigas	Tridacna derasa	Tridacna sqamosa	Tridacna crocea	Hippopus hippopus	Sichopus chloronotus	Bohadschia graessei	Bohadschia agrus	Holothuria atra	Actinopyge mauritaniano	Drown stonefish •	Techus pyramis	Trochus niloticus	Pinciada margaritifera
			11 12	NK NK	13.0 14.5	1.7								-					
			13	NK NK	24.0														
			14	NK	6.5														
			15	NK	26.0														
		S32	1	PR	17.0				8.0 8.0	23.0									
			2 3	PR PR	17.0 18.0				4.0										
			4	PR	15.0				4.0										
			5	PR	10.0				8.0										
			6	PR					13.0										
			7	PR					15.0										
			8 9	PR PR					10.0 9.0										
			10	PR				,	10.0										
			11	PR					9.0										
			12	PR					10.0										
			13	PR				;	10.0										
			14 15	PR PR					5.0 5.0										
			16	PR					8.0										
			17	PR				:	10.0										
			18	NK	9.5			:	14.0			25.0						9.5	
			19	NK	22.0			1	12.0										
			20	NK					7.0										
			21 22	NK NK					12.5 2.5										
			23	NK					8.0										
			24	NK					6.5										
			25	NK					10.0										
			26	NK					11.0										
			27 28	NK NK				,	10.5 6.0								•		
			29	NK				1	0.0										
			30	NK					2.0										
			31	NK					5.0										
			32	NK					3.0										
			33 34	NK NK					6.0 3.0										
			35	NK					9.5										
			36	MLS	6.0				5.5										
			37	MLS	13.0				6.0										
			38 30	MLS	25.5				5.5										
			39 40	MLS MLS	9.0				2.0 2.0										
			41	MLS					9.5										
			42	MLS				1	1.0										
			43	MLS				1	1.0										
			44 45	MLS					5.5										
			45 46	MLS MLS					7.0 7.5										
			47	MLS					5.0										
			48 49	MLS MLS					7.0 0.5										

									Group
									island
									Site
57	56	55	54	53	52	51	50	Number varies by site	Specimen
MLS	MLS	MLS	MLS	MLS	MLS	MLS	MLS		Specimen Observer
								Tridacna maxima	
								Tridacna gigas	
								Tridacna derasa	
								Tridacna sqamosa	
11.0	13.0	5.0	3.0	3.0	9.5	8.0	12.0	Tridacna crocea	
								Hippopus hippopus	
								Stichopus chloronotus	S
								Bohadschia graeffei	Species
								Bohadschia agrus	
								liolothuria atra	
								Actinopyga mauritaniana	
								Brown stonefish *	
								Tectus pyramis	
							į	Trochus niloticus	
								Pinctada margaritifera	

Deep, Survey 1, abundance

Appendix 2c. Raw data for deep habitat, Survey 1, January/February 1995.

D D D D D D D D D D D D D D D D D D D	dnou	Island	Site	2	Rep Obs	ļ		ļ				Species	8	1					ᆈ	Total
1 D1 1 NK 2 NK 3 NK 4 PR 5 PR 6 PR 7 NK 1 NK 2 NK 2 NK 2 NK 3 NK 4 NK 1 NK 2 NK 3 NK 4 NK 4 NK 1 NK 3 NK 4 NK 1						itichopus variegatus	helanota anax	Thelanota ananas	Black sandfish*	Blackfish*	Iohadschia argus	Iohadschia marmorata	Iohadschia graeffei	lolothuria atra	lolothuria fuscogilva	lolothuria nobilis	lolothuria fuscopunctata	lolothuria edulis	^P inctoda maxima	
3 NK 3 NK 4 RR 5 PR 5 PR 5 PR 6 PR 6 PR 7 NK 1	Vaghena	_			1 NK	s	7	7	E	ī	£	ı	ı	,	,	/	/	/	/	
5 PR 5 PR 5 PR 5 PR 6 PR 6 PR 6 PR 6 PR 6 PR 7) N. X. X.	-	_													.
5 PR 6 PR 6 PR 6 PR 6 PR 6 PR 7 NK 1 NK 2 NK 1					3 NK															. .
D2 1 NK D2 1 NK D3 1 NK A PR A PR A PR A PR A PR B S PR B S PR D3 1 PR D4 1 NK D5 1 NK D6 1 NK D7 1 NK D7 1 NK D8 1 1 D8 1 PR D8 1 1 D8 1 PR D8 1 1 D8 1 NK D9					, 4 , 7 , 7 , 7															-
D2 1 NK 2 NK 3 NK 4 PR 4 PR 6 PR 6 PR 8 NK 1 1 1 1 1 2 PR 2 PR 2 PR 2 PR 2 PR 2 PR 3 PR 4 NK 1 1 3 NK 2 PR 4 PR 4 PR 4 PR 5 PR 5 PR 6 PR 6 PR 6 PR 7					ス で ス マ ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス															0 (
2 NK 4 PR 5 PR 5 PR 5 PR 5 PR 5 PR 6 PR 1			_	ដ	1 NK															0
3 NK 4 PR 5 PR 5 PR 6 PR 6 PR 6 PR 7 PR 7 NK					12 NK															0
5 PR 5 PR 6 PR 6 PR 6 PR 6 PR 6 PR 7 1 PR 7 1 NK 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					3 NK		-													
6 PR 2 PR 2 PR 3 PR 4 NK 1 NK 2 NK 2 NK 2 NK 3 NK 4 A A A A A A A A A A A A A A A A A A A					A PR															- 0
D3 1 PR 2 PR 2 PR 3 PR 4 NK 4 NK 6 NK 6 NK 6 NK 6 NK 7					6 PR															0 (
2 PR 3 PR 4 NK 4 NK 5 NK 2 NK 2 NK 4 PR 4 PR 4 PR 5 PR 5 PR 6 PR 6 PR 6 PR 6 PR 7 NK 7 NK 7 NK 7 NK 7 NK 7 NK 8 NK 8 NK 8 NK 8 NK 9			_	\Im	1 PR															0
3 PR 4 NK 5 NK 6 NK 7					2 PR		ı													· to
5 NK 2 0 1 NK 3 1 NK 4 4 PR 4 4 PR 4 4 PR 5 1 1 2 2 NK 1 1 1 2 NK 1 1 1 3 NK 4 1 1 6 PR 5 PR 1 1 1 2 1 NK 1 1 1 2 2 NK 2 NK 1 1 1 2 3 NK 4 PR 4 1 1 1 2 5 PR 5 PR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					3 P.K		-													- 0
6 NK 3 2 NK 4 1 3 NK 4 4 5 PR 4 4 5 PR 5 2 DS 1 NK 1 1 3 NK 1 1 2 2 NK 3 NK 1 1 1 6 PR 5 1 NK 1 1 2 3 NK 3 1 2 5 PR 1 1 2 3 NK 3 1 2 5 PR 1 1 3 1 5 PR 1 NK 1 3 NK 3 5 PR 1 1 3 1 5 PR 1 NK 1 3 NK 3 5 PR 1 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					5 NK		1 3													(J)
D4 1 NK 2 NK 1 1 1 3 NK 4 4 4 PR 4 4 PR 4 4 PR 5 5 PR 1 1 1 2 NK 2 NK 4 PR 1 1 1 5 PR 1 1 5 PR 1 1 5 PR 1 1 1 5 PR 1 1 5					6 NK		w													w
3 NK 4 4 4 4 7			_	4	NK															0
5 PR 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					, NX				-											. 13
5 PR 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					4 PR		4													. 4
6 PR 5 2 NK 1 1 2 3 NK 1 2 2 4 PR 1 1 1 1 5 PR 1 1 2 2 NK 2 1 2 5 PR 1 1 1 1 2 1 1 1 5 PR 1 1 1 1 2 1 1 1 5 PR 1 1 1 5 PR 1 1 1 5 PR 1 1 1 1 5 PR 1 1 5 PR 1 1 1 5 PR 1 1 1 5 PR 1 1 5 PR 1 1 1 5 PR 1 1 5 PR 1 1 1 5 PR 1 1 5 PR 1 1 1 5 PR 1					5 PR		4							-						5 .
2 D5 1 NK 3 NK 3 NK 4 PR 4 PR 6 PR 1 1 2 1 1 5 PR 1 1 1 1 1 5 PR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					6 PR		S													5
2 NK 3 NK 4 PR 4 PR 5 PR 1 1 2 6 PR 6 PR 1 4 1 1 1 2 3 NK 4 PR 5 PR 6 PR 6 PR 6 PR 6 PR 6 PR 7 1 NK 8 NK 9 NK 9 NK 9 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		13		્ડ	1 NK															
4 PR 5 PR 1 1 1 1 6 PR 2 NK 2 NK 4 PR 4 PR 5 PR 4 PR 5 PR 6 PR 6 PR 6 PR 6 PR 7 1 NK 7 1 NK 7 2 NK 7 2 NK 7 2 NK 7 3 NK 7 4 PR 7 5 PR 7 6 PR 7 7 1 NK 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					3 ZZ						_			1) L						۔ درا
5 PR 6 PR 6 PR 1					4 PR									1	-					ري ر
D6 INK 1 1 2 2 3 NK 4 1 1 2 3 NK 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					5 PR											_	_			့ယ
2 NK 2 NK 4 PR 4 PR 4 PR 5 PR 1 3 1 6 PR D7 1 NK 1 1 1 3 1 6 PR 1 3 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			- 1	×	- OFK									4 -			-			- t/s
3 NK 4 PR 4 PR 5 PR 6 PR 1 3 1 2 NK 2 NK 3 NK 4 PR 5 PR 6 PR 6 PR 6 PR 1 1 2 5 PR 5 PR 1 1 2 5 PR 5 PR 1 1 1 5 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					NK										13					ı.,
5 PR 1 3 1 6 PR 1 3 1 2 NK 3 NK 1 1 1 5 PR 2 1 3 NK 1 1 1 5 PR 2 1 5 PR 2 1 6 PR 2 1 6 PR 2 1 6 PR 3 PR 3 PR 3 PR 4 NK 1 5 NK 1 1 1 1 1 1 1 1 1 1					3 NK															0
5 PR 6 PR 1 1 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					4 PR						•			د	•					, 0
D7 1 NK 3 2 NK 1 3 NK 1 4 PR 1 5 PR 1 6 PR 1 2 PR 2 3 PR 2 3 PR 3 PR 1 5 NK 1 5 NK 1 5 NK 1 1 1 1 1 1 1 1 1 1 1					6 PR						-			<u>.</u> .	-					_ 0
2 NK 3 NK 1 1 PR 4 PR 6 PR 6 PR 2 PR 2 PR 3 PR 4 NK 1 1 1 1 5 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			П	7	1 NK									.						
3 PR 4 PR 5 PR 6 PR 6 PR D8 1 PR 2 PR 3 PR 4 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					N N N						•									. 0
5 PR 1 6 PR D8 1 PR 2 PR 3 PR 4 NK 1 1 1 1 5 NK 1 6 NK 1 1 1 1 1 1 3 NK 1 1 1 1					4 PR						-						-			
6 PR D8 1 PR 2 2 PR 3 PR 4 NK 1 5 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•				5 PR						_									_
2 PR 3 PR 4 NK 1 5 NK 1 6 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			.	×	6 PR												J			, 0
3 PR 4 NK 1 5 NK 1 6 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ı	•	2 PR												•			0 1
4 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					3 PR									-						- (
5 NK 1 6 NK 1 1 1 3 D9 1 NK 1 1 1 2 NK 1					4 NK						_									_
3 D9 1 NK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					7 X X	_													•	دا د
3 NK 1 1	Storem	(J)	ם	ŏ	N X									-	-				-	ı , ı
1					NX										_					_
					3 NK		-													,

Ysabel		Group
5 D17 1 5 5 D18 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	D10 5 4 D11 5 5 4 D15 5 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6	Island Site Rep
PR PR PR NK K K K K K K K K K K K K K K K K K K	N R R R X X X R R R R X X X R R R R X X X R R R R X X X R R R R X X X R R R R R X X X R R R R R X X X R R R R R X X X R R R R R X X X R R R R R X X X R R R R R X X X R R R R R R X X X R R R R R X X X R R R R R X X X R R R R R R X X X R R R R R R R X X X R R R R R R R X X X R	960
2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Stichopus variegatus Thelanota anax Thelanota ananas Black sandlish* Blackfish* Bohadschia argus Bohadschia marmorata Glolothuria atra Flolothuria fuscogilva Flolothuria nobilis Flolothuria fuscopunctata
04 - 24 4 6 6 - 41 - 1 - 1 - 1 - 1 - 1 - 1	w u u v v o o o u u u u u u u u u u u u u	Pinctada maxima Total

	uavanao			roup
D26	D24	D22	D19 D20 6 D21	Island Site
			9 1 9 6 NK 0 1 9 R 8 NK 1 1 6 PR 8 NK 2 PR 8 NK 2 PR 8 NK 2 PR 8 NK 2 PR 8 NK 3 NK 4 PR 8 NK 5 PR 8 NK	Rep Obs
	2 1			Stichopus variegatus
	- -	-		Thelanota anax
				Thelanota ananas
				Blackfish* Blackfish* Bohadschia argus Bohadschia marmorata Bohadschia graeffei
	- -			Blackfish*
-				Bohadschia argus
				Bohadschia marmorala
,				Bohadschia graeffei
	() ii ii	, p		Holoshuria atra
.		ıs	⊢ (3	Ilolothuria fuscogilva
			•	Holothuria nobilis
4 4			•	Holothuria fuscopunctata
tu u tu				Holothuria edulis
				Pinctada maxima
30014124510011	000000000000	0 - 4 4 6 - 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, , , , , , , , , , , , , , , , , , , ,	Total

Total																																			Group	
																								oo											Island Site	
						D32						D31						D30						D29						Dis					Site	
	6 I	5 I	4 I	u	21) and	σ.	5 I	4 I	3	21	_	6	5 F	4 F	ω -	ıJ	_	6 F	5 F	4 F	3 7	N		4 9	5 F	4 F	w	ıJ	_	6 1	۸.	4 [Rep (
	Ř	ž	×	Ŕ	Ŕ	矣	ž	×	×	Ŕ	Ŕ	矣	Ħ	×	ਲੱ	Ŕ	矣	矣	ž	Ř	Ř	×	矣	矣	ž	ž	ಸ	矣	×	矣	P 7	ĕ	אָל		80	
16																							_							-				Stichopus variegatus		
69		ı	_		2					_	-		_	-		2		_		2			w	6	-						ı			Thelanota anax		
4																																		Thelanota ananas		
_																																		Black sand(ish*		
(Ja																																		Blackfish*		
15																									-									Bohadschia argus		
w																																		Bohadschia marmorata	Species	
IJ																										_								Bohadschia graeffei	υ ,	
71											-								-							-								llolothuria atra		
36				-																											Ŋ			Holothuria fuscogilva		
w																																		Holothuria nobilis		
35								-							_									-							-			llolothuria fuscopunctata		
16											•		-		_	-															-			Holothuria edulis		
-																																		Pincteda maxima	Total	
275	0	1.	_		()	0	0	_	0	-	· tu	0	ı	_	IJ	w	0		-	12	0	0	4	7	13	12	0	0	0	_	•	>	0		<u> </u>	

Deep, Survey 1, Length Data

Appendix 2d. Length-frequency data for deep habitat, Survey 1, January/February1995 Specimen = replicate, * indicates uncertain identification.

						Waghena	Group
		2				1	Island
<u> </u>		D5			D4	D1 D2 D3	
9 10 11 12	α ω 4 κ α Γ α	18 19 20 21 21 22	11 12 13 14 15	1 2 4 2 6 7 8 0 11:	10 0 8 7 6 5 4 3 2		Specimen Specimen
	R R R R R R	PR PR	PR P	S P N N N N N N N N N N N N N N N N N N	MASS NEW YORK NEW YOR	WIS WIS	1 1
						56.0	Stichopus variegatus
		52.0 63.5 61.0 51.0 54.0	56.0 54.5 56.5 53.5 51.0	53.5 51.0 51.0 45.0 54.5 54.5 55.5 55.5 55.5	57.5 56.0 56.0 58.5 58.5 58.5 58.0 42.0 53.0 53.0 53.0	270 270 270 270 270 270 270 270 270 270	Thelanota anax
	43.5						Thelanota ananas
				33.0			Black sandfish*
							Blacklish*
		27.0					Bohadschia argus
							Bokadschia marmorata g
						41.0	Bohadschia græffei
46.5 46.5 38.5 38.0		46.5		43.0	35.0		Holothuria atra
	33.0				31.5		Holothuria fuscogilva
	36.5						Holothuria nobilis
43.5 46.5	39.5 35.0						Holothuria fuscopunctata
							Holothuria edulis
							Pinctada maxima

			Arnavons	Group
				Ishnd
	4		ω	ا ي
D14 D15 D16	D11 D12	D10	D7 D8	Sile
0 2 4 4 0 2 4 C 4 C 4 C	13 14 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	2 1 1 2 2 3 3 4 4 4 6 6 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10		Number varies by site Observer
MIS WITS WITS WITS WITS	MIS	P P R R R R R R R R R R R R R R R R R R	PR MIS	Observer
62.5		57.8	50.0	Stichopus variegatus
54.0			61.5	Thelanota anax
	66.0			Stichopus variegatus Thelanota anax Thelanota ananas Black sandlish*
				Black sandlish*
		29.5		Blackfish*
43.0	41.0	30.5 28.0	51.0 42.0 42.0	Bohadschia argus
28.0		30.5		Bohadschia marmorata
	35.0			Bohadschia graeffei
53.0 49.0 46.0 41.5 46.0 43.0 38.0 55.0 46.0 47.0	39.5 42.0 38.5 42.5 49.0 52.0 49.0 46.0 39.0	43.5 36.5 43.5 35.0 48.5 33.5 34.0 34.0 32.0 42.0 37.0	43.0 46.5 47.0 46.0 49.0 42.5	Holothuria atra
\$5	0.01	12.5	46.0 33.5 42.5	Holothuria fuscogilva
46.0	31.0 38.5 36.5			Holothuria nobilis
51.0 54.0 48.0 52.0 48.5 53.5	50.0 25.0 50.0		39.0 42.5 46.5 52.5	Holothuria fuscopunctata
	26.5 42.0	35.5		Holothuria edulis
			15.6	Pinctada maxima

Suavanao		Ysabel	Group
7	•	S.A.	sin n d
D25	D20 D21 D22 D22	D17	Site
1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 5 1 2 8 1 2 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	10 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Number varies by site
PR P	Z	# # # # # # # # # # # # # # # # # # #	Observer Okserver
57.5 54.5	48.0 46.0	50.0 49.0	Stichopus variegatus
57.0 46.0 59.0 52.0	61.5	74.5	Thelanota anax Thelanota anax Thelanota ananas Black sandfish* Blackfish*
			Thelanota ananas
<u>.</u>	33 30.0		Black sandfish*
40.0	0 49.5	30.0	Blacklish* D O Bohadschia argus
			Bohadschia marmorata 🥳
38.0 S 32 D 4	w 4 4¢	4 4 4 4 4 4 4	Bohadschia græffei
50.5 39.5 34.		46.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	S S S S S S S S S S S S S S S S S S S
43.5 36.0	44.5 44.0 44.0 33.5 37.0 45.5 28.0	37.5 37.5 38.0 38.0 39.5 34.5 35.5 35.5 37.0	Holothuria fuscogilva
2 444	39.5 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	4	Holothuria nobilis
54.5 44.5 33 41.0 35	47.5 46.0 46.0 49.0 47.5 37.5 43.0 45.0	43.0 .0	Holothuria fuscopuncte#a
33.0 35.5		45.0	Holothuria edulis
			Pinctada maxima

																																							Group	
																																							kland	
	D32	150	3				D30																	8 D29		D28							D27						Site	
10400	2 -	2 -	- 6	O I	w	2		3 21			18					3 =	_			7 0				2 -	. 2	<u>-</u>	6 0	0 7	6	rv t	. w	2			16			Number varies by site	Specimen Observer	
MIS PR	<u> </u>	PR F	R	PR	Z Z	XX	X E		MLS	MLS	MIS MIS	S IV	MLS	MLS	MLS	אק אק	×	NK	N.	Z Z	Z X	N K	X	Z Z	PR	NK	M N	R	PR	PR	3 7	N K	×.	Z Z	X X	MLS	SJW		Observer	
														,	53.5									98.0	3	56.0											ļ	Stichopus variegatus		Deel
73.5 72.5 55.0 67.5 62.5	70.5 80.0	2.	69.0	67.5	51.5 65.0	55.0	0.19	59.0	53.0	51.0	57.5	52.0 58.0	61.0	52.0	54.5	2 2 0 0	52.5	57.0	67.5	61.0	49.5 40.0	111.0	56.0	50.0	63.0					.77.0	69.0	>	68.5	58.0				Thelanota anax		Deep, Survey 1, Length Data
																																			74.0			Thelanota ananas), [
																																						Black sandlish*		engt
			•																																		ŀ	Blackfish*		Da
																									45.0												-	Bohadschia argus		Õ
																																					,	Bohadschia marmorata	Species	
																									28.0												4	Nohadschia græffei	*	
		5	<u>+</u>											50.5	50.5	47.0	i							0.00	48.5										47.5			Holothuria atra		
	45.0																											4.5	45.0	42.5	20.5	•					ı,	Holothuria fuscogilva		
		•		• ••																				4.4							4						- 1	Holothuria nobilis		
		55.0		55.0																				43.0	N						4/5					52.5	<u>.</u>	Holothuria fuscopunctata		
		60.5	30.0	36.0			14.0								30.0												24.5	2			18.5	32.0	37.0	و ا	30.0 34.4			Holothuria edulis		
																																					1	Pinctada maxima	i	

Pinetada maxima

Group

backs

			İ
	9 NK		Number varies by site
₹	굿	굿	
	61.0	60.5	Stichopus variegatus
60.0	2	66.0	Thelanoia anax
			Thelanota ananas
			Black sandfish*
			Blackfish*
			Bohadschia argus
			Bohadschia marmorata
			Bohadschia graeffei
			Holothuria atra
			Holothuria fuscogilva
			Holothuria nobilis
		50.5	Holothuria fuscopunctaa
			Holothuria edulis

Appendix 2e. Raw data for shallow habitat, Survey 2, April/May, 1995. Rep = relicate number, Obs = initials of observer, * indicates uncertain identification

Group	Island	Site	Rep	Obs							S	pecie	:s									Total
					Tridacna maxima	Tridacna gigas	Tridaena derasa	Tridacna sqamosa	Tridacna crocea	Hippopus hippopus	Stichopus chloronotus	Bohadschia graeffei	Bohadschia agrus	Holothuria atra	Actinopyga mauritaniana	Brown stonefish •	Tectus pyramis	Trochus niloticus	Pinctada margaritifera	i rochus mioneus	Holothuria nobilis	
Waghena	1	S1	. 1	PR													4					
-				PR	1				3								3					
				PR	2																	
			4	NK													1					
			5	NK	1				_			2			1							
				NK	3				2													
		S2		PR	2				2													
				PR	4												1					
				PR	1											1	1					
				NK	1 2											1	1					
				NK NK	2			1				1					1					
		S3		PR	1			1				1					•					
		33		PR																		
				PR																		
				NK	1																	
				NK	_												3		•			
				NK													1					
		S4		NK													1					
				NK																		
				NK																		
				PR					2								1					
				PR	3												1					
				PR	4																	
	2	SS		PR	6																	
				PR	3												1					
				PR	4																	
				NK NK	4																	
				NK	1 2																	
		Sé		PR	4																	
		-		PR	6			1	1								1					
				PR	5			-	-								1 2					
				NK	1																	
				NK	1																	
			6	NK	1																	
		S		PR	1																	
				PR	2 2													1		1		
				PR	2																	
			4	NK	2																	

		Arnavons	Group
S14	\$12 4 \$13	3 S9 S10 S11	Island Site Rep
65432165431			- 6 M
N N N N N N N N N N N N N N N N N N N	8	######################################	1
1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tridacna maximu Tridacna gigas Tridacna derasa Tridacna sqamosa Tridacna crocea Hippopus hippopus Stichopus chloronotus Bohadschia graeffei Bohadschia agrus Holothuria atra Actinopyga mauritaniana Brown stonefish *
1 1 2 3 2 1 2 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 122 1 221	Tectus pyramis Trochus niloticus Pinctadu margaritifera Holothuria nobilis

				Ysabel	Group
Ø	6	<i>(</i> 0		6	Island Site
S22	S21	\$19 \$20	S18	\$15 \$16 \$17	1
216543	02165432		ς ω 4 γ ο 4 ς ω 4 γ ο	1654321654321	Rep
¥ ¥ ¥ ¥ ¥ ¥	BRRKKRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	***********		Y R R R R R R R R R R R R R R R R R R R	Og
1 1 2 1 2	22 12	11214	, , , , , , , , , , , , , , , , , , ,	21 1 1 3	Tridaena maxima
	L	H			Tridacna gigas
		H	₽ ₽		Tridacna derasa
		-	⊢		Tridacna sqamosa
2 1 2 2	, , ,		فسو فسو		Tridacna crocea
-	·			⊢	Hippopus hippopus
-	w	-	2	-	Stichopus chloronotus
<u></u>	2	٠	- w -		Stichopus chloronotus Bohadschia graeffei
					вопаазсна адтиз
	H		1 1 4 5 4 1	12	Holothuria atra
1					Actinopyga mauritaniana
			-		Brown stonefish *
11134			1 5 2	1 1	Tectus pyramis
—	1 1			1 1	Trochus niloticus
-			1		Pinctada margaritifera
					Holothuria nobilis
					Total
					1

Group	Island	Si	te	Rep	Obs			-				Sp	ecie	s								Total
						Tridacna maxima	Tridacna gigas	Tridacna derasa	Tridacna sqamosa	Tridacna crocea	Hippopus hippopus	Stickopus chloronotus	Bohadschia graeffei	Bohadschia agrus	Holothuria atra	Actinopyga mauritaniana	Brown stonefish *	Tectus pyramis	Trochus niloticus	Pinctada margaritifera	Holothuria nobilis	
					3 NK	2		1	2	<u> </u>	=	<u>~</u>	<u> </u>	8	<u> </u>	<u> </u>	<u> </u>	2		<u> </u>		
					4 PR	3		_			1											
					5 PR					1								4				
					6 PR	3												4				
			S23		1 NK	4												1				
					2 NK	1												1	1			
					3 NK	2				1												
					4 PR	3				1	1							3				
					5 PR	4				1								1				
					6 PR					1								5				
			S24		1 NK	1		2														
					2 NK	1				2								1				
					3 NK							1						_				,
					4 PR	1												1			1	<u>l</u>
					5 PR	1													1			
					6 PR			1										4		•		
Suavanao		7	S25	;	1 PR	2												1				
					2 PR													2				
					3 PR	1												1				
					4 NK	1																
					5 NK													1				
					6 NK													1	•			
			S26	5	1 PR													1				
					2 PR	1												1 2				
					3 PR	2	!											1				
					4 NK																	
					5 NK																	
				_	6 NK	1														1		
			S2'	7	1 PR	3	5													•		
					2 PR	1										1	ı					
					3 PR]										•				1		
					4 NK	1	L			1								2	3	1 2		
					5 NK 6 NK		1			•												
			62	0			1															
			S2	0	1 PR 2 PR	:	2 2															
					2 PR 3 PR	•	2 1												3	1		
					4 NK		1															
					5 NK		2													1		
					6 NK		1												2	2		
		8	S2	9	1 PR		2												5 2			
		J	32		2 PR		1												2			
					3 PR		1													1		
					4 NK		1							1					1			
					4 9 441	-	_															

																					Group
																					Island
					S32						S31						S30				Site
					,,												Ŭ				Rep
6 NX	5 NK	4 NX	3 PR	2 PR	1 PR	6 NX	SXX	4 NX	3 PR	2 PR	1 PR	6 NX	5 NX	4 NX	3 PR	2 PR	1 PR	6 NK	S NK		840
	2		0	2	6	ω	W	ယ			ω			-		-	2	2		Tridacna maxima Tridacna gigas Tridacna derasa	
9	10	13	1 10	9	32		-												_	Tridacna sqamosa Tridacna crocea	
1	1																			Hippopus hippopus Stichopus chloronotus Bohadschia graeffei Bohadschia agrus	Species
																				Holothuria atra Actinopyga mauritaniana Brown stonelish *	
			2	1	1				1	1	2	1 2	-	ω	2	_	2	1		Tectus pyramis Trochus niloticus Pinctada margaritifera Holothuria nobilis	
																					Total

Shallow, Survey 2, length data

Appendix 2f. Length-frequency data for shallow habitat, Survey 2, April/May 1995 Specimen = replicate, • indicates uncertain identification.

Group	Island Site	Specimen	Obs							S	pecies				,			***			
		Number varies by alie		Tridacna maxima	Tridacno gigas	Tridacna derasa	Tridacna sqamosa	Tridacna crocea	Hippopus hippopus	Srichopus chloronotus	Bohadschia gracsfei	Bohadschia agrus	llolothuria atra	Actinopyga mavrisaniana	Brown stonefish *	Tectus pyramis	Irochus niloticus	Pinciada margaritifera	Holothuria nobilis	Actinopyga miliaris	The lands and
Waghena	1 5	51 2	PR	16		<u> </u>		11 2 3.5			34		-5-	₹_	<u>. ma</u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	_<_	E
		3	PR	13				J.,													
		5	NK	23 17							36 37			31							
		6	NK	16 18				11 10			31										
	S2	1	PR	15 20				9													
		2	PR	24 14.5 28 29 28				11													
		3	PR	13 12																	
		4 5	NK NK	12 19 23											26						
		6	NK	23			32				34.5										
	S3	1	PR	23																	
	S4	4 4	NK PR	32				6													
								6 16.5													
		5	PR	12 19 6																	
		6	PR	13.5 25 30 11																	
	SS	1	PR	15.5 15.5 10.5 17 5.5														٠			
				24																	
		2	PR	16.5 17																	
		3	PR	17 15 13 17																	
		4	NK	16.5 19.5 18 17																	
		5	NK	20.5 13																	
		6	NK	10 20																	
	\$6	1	PR	15 20 6.5																	
				20																	

	Апачов			Group
S 10	ა ა	88	S7	Island Site
ע בטה אט א א א	- 6 v	4 N 0 4 UU4	ω 4νδ⊶α ω	Number varies by site 2. 3. 8
PR PR NK	PR PR	PR X X X X X	PR PR PR	ð
11 14 29.5 29.5 30 31.5 31.5 32 32	22.5 21 23.5 11.5 17 23 11 13 16 16 16	12 21 16 23 23 23 11 11 20 20	13 12.5 14.5 13 13 14.5 15 20 20 20 20 20 20 20 20 20 20 20 20 20	Tridacna maxima
				Tridacna gigas
				Tridacna derasa o
		ಜ		Tridacna sqamosa
	ធ	6.5		Tridacna crocea
	5			Tridacna derasa Tridacna sqamosa Tridacna crocea Hippopus hippopus Stichopus chloronotus Bohadschia graeffei
		8 8		Stichopus chloronotus 💆 🗸
				Bohadschia graeffei g
				Bohadschia agrus
				Ifoloshuria asra
30				Actinopyga mauritaniana
				Brown stonefish *
				Tectus pyramis
			11.9	Trochus niloticus
	•		7	Pinciada margaritifera
		27.5		Holothuria nobilis
				Actinopyga miliaris
				Thelanota anax

Group	lsland	Site	Specimen	Obs						•	S	pecies										
			Namber varies by slie		Tridscna maxima	Tridacna gigas	Tridacna derasa	Tridacna sqamosa	Tridaena crocea	Hippopus hippopus	Sichopus chloronotus	Bohadschia graeffei	Bohadschia agrus	Holothuria atra	Actinopyga mauritaniana	Brown stonefish *	Tectus pyramis	Frochus niloticus	Pinctada margaritifera	Holothuria nobilis	Actinopyga miliaris	Thefenote ener
					18																	
			6	PR	22 17 29 25.5					13.5												
		S11	2 4	PR NK	27.5 30 33																	
		cıa	5	NK PR	23.5 27									36								
		S12	1 2	PR	21								1		23 23						29	
			3 4	PR NK	22 34													7.6				
			5	NK	32 29																	
			6	NK -								25										
		S13	2 3	PR PR											24.5			12.1	7			
				PR											30							
			4 5	NK NK	20 11.5 27 20						40				32							
					25																	
			6	NK	26.5 21 23		51				21											
		S14	1	PR	12						31.5	31.5 32										
					31 20 21 23 28 18																	
			2	PR	26 23						18	21						9.9				
			3 4	PR NK	23 30.5	43												8.6				
					14 7.5	•••																
			5	NK	15.5 33 17																	
			6	NK	24 28 31					31.5												
		S15	2	NK							30							8				
			3	NK	27 31 21																	
			4 5	PR PR	32													8.4 8.5				
			6	PR	24																	
		S16	1	NK						12					31							
			2 3	NK NK	33					16					30							
			6	PR	25.5 21					30 39												

																																		Ysabel		Group	
SE						S21					S20						\$19								S18									5 S17		Island Site	
2 -	•	W t	. w	•	J	- - c	у 0	4	v	n N	- 6	s 04		ω 4			, –	,	٥.	ļ	4.0	. ພ	2		- 0	>	U	٨		4		W	2	-	Number varies by site	Specimen	
X X	NK	Z Z	PR	7	B	PR	Z Z	×	7	PR	PR	Z Z		R R		;	R PR	:	PR	;	7 7	X	X		X;	T Z	7	ğ		PR		X	X	×		ð. O	
10.5	15	19.5	22 14	ដ	% IS	27.5		ĸ	26	3	ş	# K	23 (2 23	9 <u>5</u>	23	۷ در	19	21 8	10	16.5	29	8		15.5					27		23.5	10.5	ដ	Tridacna matima		
				9	ŝ						59																								Tridacna gigas		
53		53					53										28			:	53				3 4	*									Tridacna derasa		Shal
													:	<u> </u>								SO										11.5			Tridacna sqamosa		Shallow, Survey 2, length data
,	5	13 to	= 5	•	^					15				7													ŧ	5		12					Tridacna crocea		urvey
			¥							×											23	3	44.5							3	x {	% % %	24.5		Hippopus hippopus		2 10
32						<u>.</u> ز	2 2 2	24.5		7	8	%						28	33						18.5					47					Stichopus chloronotus	Ś	ngth c
			39		36	26												;	ដ					88	31.5								35		Bohadschia graeffei	Species	ato
																																			Bohadschia agrus		
								29														æ			i	2 % 5	ដ	2 2 2	18 18	3 23 !	122	2 23 13	32 24	23 23	Holothuria atra		
		8 8	3																																Actinopyga mauritaniana		
																					27												27		Brown stonefish *		
																																			Tecsus pyramis		
	13			. 1	2		10	10.4	11.6	0																								12	Trochus niloticus		
15																									15							15			Pinctada margaritifera		
		દ	3																																Holothuria nobilis		
		·																																	Actinopyga miliaris		
																					4														Thelanota anax		

													Suavanao	ı																					Group	
				S28					S27		S26		7 S25) }					S24									S23							Island Site	
6	4 23	. w	2	25 6		4 2	. w r	3		٥	3 2	ىن مە			o (v	4 0	រ	2	4 - 0	•		v		4	ωι	2		3	(o 0		4	3	Number varies by site	e Specimen	
×	N Z	PR	PR	PR			2 3		PR			NK			PR	PR	Z K	Z K	N S			PR		PR	×			X K		PR PR		PR	NK		Og Og	
25.5	27.5	: :: :	2 2 3	5 22 22	!	27	21.5	17.5	, 2°	8 8 8 8	19	2 2	2 = 7	5	ß	23		27	8	23	22.5	3 2	8 %	3 ≅ \$	3 2 2	27.S 32	23 6	28.5	8 1	z	23 88	2 2 5	18	Tridacna maxima		
																																		Tridocna gigas		
														,	2			Š	8														51	Tridacna derasa		줐
						36																												Tridacna sqamosa		¥o ¥
																	12	14	٥	6		12		13	14					12				Tridacna crocea		Surve
																								36								23		Hippopus hippopus		Shallow, Survey 2, length data
																ş	*																	Stichopus chloronotus	ι ο	ng th
																																		Bohadschia graeffei	Species	data
																																		Bohadschia agrus		
																																		 Holothuria atra		
							23																											Actinopygo mauritaniana		
																																		Brown stonefish *		
																																		Tectus pyramis		
10	11.5	10	14.0	5	13	11.5		;	00					8.7	11.7 9.9	1									,	•								Trochus niloticus		
												٠																						Pinctada margaritifera		
																32																		Holothuria nobilis		
																																		Actinopyga miliaris		

Thelanota anax

	, , ,	C'4.	c - · ·	○ ₩-			J. IC	3110 W,	JU: V G Y	_, 101		pecies										
Group	Island	Site	Specimen	UOS							٥,				o D				9			
			Number varies by site		Tridacno maximo	Tridacna gigas	Tridacna derasa	Tridacna sqamosa	Tridacna crocea	Hippopus kippopus	Stichopus chloronotus	Bohadschia graeffei	Bohadschia agrus	Holothuria atra	Actinopyga mauritaniana	Brown stonefish *	Tectus pyramis	Trochus niloticus	Pinctoda margaritifera	Holothuria nobilis	Actinopyga miliaris	Thelanota anax
-		S29	1	PR	16 16													12				
			2 3	PR	24 16													11.6				
			3 4	PR NK	16 11							24										
			5	NK					11.5						31			11 11.5				
			6	NK	22.5 18							20.5										
		S30	1	PR	18 25 24													11.5 11.3 9				
			2	PR	20													8.1				
			2 3	PR PR														9.2 7.8				
																		9.6 10.1				
			4 6	NK NK	9.5													9				
																		11.5 9				
		S31	1	PR	10.5 26.5 9.5																	
			4	NK	18 18.5																	
			5	NK	31 30.5			10.5														
					12 22.5																	
			6	NK	15.5 17.5																	
				20	11.5																	
		S32	1	PR	15 14				8 7													
					13 14				5 5										•			
					12				12													
					13				8 2													
									3													
									4 7													
									7.5 7													
									6													
									9 8													
									9 6											•		
									8.5 8													
									8 6.5 6													
									6													
									6 3													
									3 2 12													

Group Island Site	Specimea Obs	Sho	aallow, Survey 2, length data Species	S
	Number varies by sife	Iridocno marina Tridocno gigas Tridocno deraso	Tridacna sqamosa Tridacna crocea Hippopus hippopus Stichopus chloronorus	Bohadschia agrus Jolothuria atra Actinopyga mauritaniana Brown stanefish * Tectus pyramis Trochus niloticus Fractada margaritifera Holothuria nobilis Acttnopyga miliariu
	2 PR	16 14	7 12 13 6.5 8.5 6	9.1
			6.5 14 3.5 2 6 2	9.2
	3 PR	24 12 12 2.5 12 20	32 13 10 14 13 12 7.5	9.2
	4 NK		14 12 7 4 4.5 5.5 6.5 5	12.5
		126	6.5 11.5 8.5 10.5 2.5	•
	5 NK	13.5 17	9.5 10.5 8 11.5 11 3.5 7	
	6 NK		10 9 5 37 5.5 3 12 6.5 7.5	
			8.5 10.5 34	

Deep, survey 2, abundance

Appendix 2g. Raw data for deep habitat, Survey 2, April/May, 1995.

Rep = replicate number, Obs = initials of observer, * indicates uncertain identification

	Amayons																																								Waghena		Group
·	,s																			2	ı																				1		Island
ţ	Ç				D8					D7					D6					D5] 1					D 4					D3					D2					D1		Site
3 PR	- 6 NK		4 V T X				5 PR	4 PR	» N) L	6 NK	5 NK	4 NK	3 PR	1 PR	6 NK	5 NK	4 N N	3 PR	1 PR	6 NK	5 NK	4 NK	3 PR	2 PR	1 PR	N Z Z	^ ! \\	A V C K	2 PR	1 PR	6 NK	5 NK 2	A NK	2 PR	1 PR	6 NK	5 Z Z Z	3 P.R	2 PR	1 PR		Rep Obs
													_																													Stichopus variegatus	
						-															Ų,		ы	_	_	– ,	⊣ در	٠,	4 -		—	2	ω r				ı	_				Thelanota anax	
-																									-																	Thelanota ananas	
																																										Black sandfish®	Ì
															-																											Blackfish*	
																																										Bohadschia argus	
																																										Bohadschia marmoreta	Species
																																										Bohadschia graeffei	"
22 23		•	<u>.</u> .	,	2	Ŋ								•	-	12				٠ ـ	•				-																	Holothuria atra	
			-								IJ			, and		ы	_		•	٠ ـ	•		-			-																Holothuria fuscogilva	
																																										Holothuria nobilis	
13												13				_			w	-	•																			_		Holothuria fuscopunctata	
																																										Holotkuria edulis	
																																										Pinctada maxima	اب
us us		•	_ 0		2	u ،	_				2	2	ı	. ,	a c	٠	_		4 4		, ₍ ,		w	_	w	2						2	, دي					-					Total

	Group
D18	, and an arrange of the contract of the contra
5	Rep
3 N K S PR S PR S PR S PR S PR S PR S PR S	P Os S A S P P P P P P P P P P P P P P P P P
1 1 2 1	ب ب ب ب Stichopus variegatus
•	Thelanota anax
	Thelanota ananas
	Thelanota ananas Black sandlish* Blacklish* Def No. 1
	Blackfish*
	Bohadschia argus
	Bohadschia marmorata SC CC
	Bohadschia graessei
to.	υ - υ
4	- 10 12 12 15 Holothuria fuscogilve
	Holothuria nobilis
	на на на на на Ilolothuria fuscopunctata
	Li llolothuria edulis
	Pinctada maxima O
v 00	<u>5</u> 2 1 1 2 3 3 3 2 1 1 2 2 3 4 3 6 2

Group	Island Site	Rep Obs			•	-			Spec	ies						Т	Total
			Sichopus variegatus	Thelanola anax	Thelanota ananas	Black sandfish*	Blackfish*	Bohadschia argus	Bohadschia marmorata	Bohadschia gracffei	lioloshuria atra	Holothuria fuscogilva	Holothuris nobilis	Holothuris fuscopunctata	Holothuria edulis	Pinctada maxima	
		4 PR 5 PR										3					3
	D1	6 PR															
		2 PR 3 PR						1				1					1 1
		4 NK	1					•									1
		5 NK 6 NK															
	D2	0 1 PR 2 PR										1					1
		3 PR 4 NK										1					1
		5 NK										1					1
	6 D2											1					1
		2 NK 3 NK							1			1		1			2
		4 PR 5 PR															
	200	6 PR															
	D2:	2 PR												1			1
		3 PR 4 NK			1			1						2 1			3 2
		5 NK 6 NK									1 1	1		4			3 2 2 5
	D23			1													1
		3 PR		•													•
		4 NK 5 NK															
	D24	6 NK 1 PR	3	1							2					•	· 1
		2 PR 3 PR			1												1
		4 NK 5 NK		1			1 1				1		1				3 2
Suavanao	7 D25	6 NK	1				•				2	1	•				4
Suavanao	1 02.	2 PR						1						1	1		1 2
		3 PR 4 NK		1				1							1		2 1 2
	,	5 NK 6 NK													1		1
	D26										2			2			2 2
		3 PR 4 NK		1							2 1	1		1			4
		5 NK		1										3	1		5
	D27																
		2 PR 3 PR		3 2								4 2			1		8 4

Total																																	İ		Group	
						ָם						D31						D30						8 D29						D28					Island Site	
						D32						31						30						9						8					Rep	
	6 PR	5 PR	4 PR	3 NK	2 NK	1 NK	6 NK	5 NK	4 NK	3 PR	2 PR	1 PR	6 NK	5 NK	ANK NK	3 PR	2 PR	1 PR	6 NK	5 NK	4 NK	3 PR	2 PR	1 PR	6 NK	5 NK	4 NK	3 PR	2 PR	1 PR	6 NK	5 ZX	4 NK		960	
18																_				_														Stichopus variegatus		
65	IJ	_	12	_								_	12	_			_				W	_		13										Thelanota anax		
٥																																		Thelanota ananas		
																																		Black sandlish*		
رم ا																																		Blackfish*		
10																						_					_							Bohadschia argus		
1.5																																		Bohadschia marmorata	Species	
																																		Bohadschia graeffei	X	
72								-																										Holothuria atra		
52																																		Holothuria fuscogilva		
<u> -</u>																																		Holothuria nobilis		۱
42										_	_	_									-													Holothuria fuscopunctata		
20											-				-				_							_	_	 -		2	2			Holothuria edulis		
																																		Pinctada maxima	lotal	
282	1.3	, -	٠ ١٧	,	•			_		12	ν	2	12	_	_	-	-		-	-	4	IJ	1	2		_	ı	_	_	12	2			1	=	

Appendix 2h. Length-frequency data for deep habitat, Survey 2, April/May 1995 Specimen = replicate, * indicates uncertain identification.

																																													Waghena			Group	
		DS.																D 4																		D3							77	3	1 D1	l		Island Site	
ω <i>ι</i> 2		_							6	S				4		ω	2	1				•			¢	٧	,	U,		4				ω				0					n 6	. ·	n 12	N	lumber varies by site	Specimen Obs	
PR PR		PR							×	X				X		PR	유	PR							7	Z	į	X		×				PR	PR	PR		X		:	Z ;	Z;	R 7	8 5	Z Z	3		윷	i
																																														s	itichopus variegatus		i
			57.0	53.0	56.5	45.0	60.0	49.0	51.5	52.0	51.0	45.0	61.5	50.0	51.0	54.0			55.0	43.0	63.5	0.00	3 8	5 6	7 7 6	560	42.0	800	54.0	47.0	689	61.0	5.08	67.0	63.5	51.0	71.0	63.0	28	62.5	50.5	\$: 0	54.0		y y	1	Thelanota anax		
																	72.0	•																									6	63.0		7	Thelanota ananas		
																																														E	Black sandlish*		İ
																																														I	Blackfish*		
																																														,	Bohadschia argus		
																																														k	Bohadschia marmorata		
																																															Bohadschia graeffei		
50.0 41.0		46.0															45.5																														Holothuria atra		
38.0	0 25	37.0							41.0	; •			37.0	40.5	;			35.0)																											ļ	Holothuria fuscogilva		İ
																																															Holothuria nobilis		
46.5		44.0																																												240	Holothuria fuscopunctat	a	
																																															Holothuria edulis		
																																														ļ	Pinctada maxima		l

																AITHAVORS																								Group
																																								Island
											D10					7	3							2	3		D7						Do	?						Site
4	ω							,	2		,	(-	w			4 (w	2	•		0	υ	0		Si	4	ω r	- د	•	6	5		ŀ	Number varies by site	Specimen Obs
NK K	PR							;	P.		PR	,	Z	PR		77	g K					PR	PR	P.K	3	PR	PR	N		×	X	2 3	7	3	×	X				Og C
47.5																															54.0							ļ	Stichopus variegatus	
											5			4		·	^									60.0							0.00	3				1	Thelanota anax	
											57.5			47.0		0.80	9																					-	Thelanota ananas	
	27.0							!	27.0																								ر. د د	3				-1	Black sandlish* Blacklish*	
	27.0 34.0								•																									•				1	Bohadschia argus	
37.0																																						4	Bohadschia marmorata	
(1)			4.4	to 4								ا ا		1.3	، ۵	A (4.4			in t	<i>.</i> .		ta i	ta ta		. ta					t.n			4	. ta			ŀ	Bohadschia graeffei	
39.0	46.0	41.0	46.0	36.0	44.0	49.0	55	0.0	49.0 42.0	47.0			40.5 43.0	36.0	48.0	710	45.5	47.0	48.0	51.0	48.0		52.0	58.0	2.0	51.0					51.0	‡ 			38.5			4	Holothuria atra	
											į	42.0	٥ ٢									43.0						36.0 34.0	,			36.5	30.0	20.0	6.0	28.5		,	Holothuria fuscogilva	
																											_		_				_					- 1	Holothuria nobilis	
									51.0		41.0	į	52.0 43.0	48.0													41.5		48.0	42.0			ŧ.	45.5	40.0		47.0	55	Holothuria fuscopunctata	
											33.0																											,	Holothuria edulis	
																																							Pinctada maxima	

																																							Group
																																							İsland
			D16		נוט							214	?									D13					D12						71	2					Site
6	'n	4	2		y u	, O	5	4	•	w	2	•-	•	6		U	4 1	ω		r	J	-	5	U	۰ ۲	•	,	•		6	'n	ω	۲۵ -	- 0	, _V ,		No	umber varies by site	Specimen Obs
X	X	Z,	PR	!	X X	PR	PR	ž	3	×	X	7		XX		7	ž ×	PR		5	g	PR	X	r X	3 3	3	PR	3		PR	PR	×	Z Z	Z Z	í Ķ				Š
	1	53.0	51.5				.,		•	55.0 :		_						•															6	^	49.0		Sti	ichopus variegatus	
							72.0		53.0	57.0		0.0						59.0																			Th	elanota anax	
																								5 .0	5												Th	elanota ananas	·
																																					Bı	ack sandfish*	
<u>.</u>																															•••						ВІ	ackfish*	
43.0																															37.0		č	270			Be	hadschia argus	
																																					Be	hadschia marmorata	
<u>4</u> ي	. (43	wı	e w			S																																ohadschia graessei	
49.0 50.5			38.0 41.0		4	54.5	ر د				٠ ٨			•••								52.5				54.0	52.0 17.0	; >	<u>ن</u> د	45.5			40.5	Ü	47.5	45.0	3 116	olothuria atra	
	č	48 0		47.0	7.5		į	44.5	1		0.0	3 E	3.0	39.0	22.0	% C	; ,							36.5													116	olothuria fuscogilva	
ta.																							;	34 i				55.0	56.5	54.5							116	olothuria nobilis	
52.5			52.0								42.0						50.0		41.5	49.5	6			34.0								44.0					n.	olothuria fuscopunctata	
					42.5	;																															116	olothuria edulis	
																																					Pi	nctada maxima	

																																							Ysabel			Group
																																										İsland
	D24	D23										D22		D21				טצט			D19	1											D18						D17			Sie
8	1 6	2				ο,	4 A	•	ω		2	_	w	2	0	٠	л #	× 10	4 (. W	· 12	ŧ		4							^	.	_	6		4	(Li	2	_		Number varies by site	Specimen Obs
PR	P N	PR				<u> </u>	Z	Ě	PR		PR	PR	Ķ	X.	×	2	Z 7	X X	3 7	ž Ž	3 %			PR							7		×	PR		PR	X	Ķ	X			OF P
0.40	53.5 53.0																		0.20	3											C.20	3		55.5	52.0	50.0		57.0			Stichopus variegatus	
	68.0	65.0																																					67.0		Thelanota anax	i
\$6.0									56.5	t																															Thelanota ananas	
																																									Black sandlish*	
																				Į,,																					Blackfish*	
							60.5	5 h												38.0	5																				Bohadschia argus	
													28.5																												Bohadschia marmorata	
	.		••										••																											- 1	Bohadschia graeffei	
	54.0 48.0		55.0			į	47 N 4N N						54.5																								53.5			8	Holothuria atra	
						ć	000	45.0	•					44.0	8 6	25.0	4,5	4 6	•		48.0	39.0	44.5	42.0	41.0	36.5	42.5	7 5	בֿ בֿ בֿ	42.0	42.0	40.5									Holothuria fuscogilva	
																																	40.5								Holothuria nobilis	
			50.0	52.0	51.0	51.5	£	55.5	48.5	50.0	55.0	49.5		48.0																											Holothuria fuscopunctata	
														•																										ļ	Holothuria edulis	
																																								ļ	Pinctada maxima	

																																			Suavanao										Group
																																													Island
		D30								D29	3						D28											D27							D26				D25						Sile
.4	υ.	N 6	y 24			•	w			-		4	. ω	2			1		6	4			w					2		و	, u	د	2		—	S	4	n K	, –		ο :	4 4	-	Number varies by site	Specimen Obs
NK ;		PR	Z X		5		PR			77	Z X	Z	PR	PR			PR		Z	X			PR					PR		ž	Z 7	DO	PR		PR	Z	Z :	P Z	PR		¥;	Z			D C C
į		. •	51.5				_																																		46.0		-	Stichopus variegatus	
	71.0	74.0		57.5	52.0	53.0	50.5	\$6.0	55.5	7 0	S											79.5	61.5			72.5	86.0	72.0		į	24.0						;	74.0				6/.0	3,	Thelanota anax	
																	2,5																				į	62.0					7	Thelanota ananas	
																																											- 1	Black sandfish*	
							•••					42.0	; ;																												ë	ט פר	3	Blackfish*	
							34.0																														37.0	33.3	7				E	Bohadschia argus	
																																											ı	Bohodschia marmorata	
																																											- 1	Bohadschia graeffei	
																							_				_	_				8 6 6								49.0		4/.0	3	Iolothuria atra	
																					41.0	49.0	45.0	40.0	40.0	46.0	42.0	44.5			40.0		48.5								48.5		1	Holothuria fuscogilva	
																																									į	42 O	1	Holothuria nobilis	
to.		1.	,		42.0	5										_													50.0	44.5		2	44.5	41.0					50.0				,	Holothuria fuscopunctata	
31.5		33.5	'n								32.0	26.0	32.5	30.0	34.0	.465	27.0	16.5	28.0	26.5								30.0		0.00	200					22.5	30.0	0.10	3				,	Holotkuria edulis	
																																											,	Pinctada maxima	

																	Group
																	Island
						D32						D31					Site
	0	5		4	ω	1	0,	5	w		2	-		6	S	Number varies by site	Specimen Obs
	PR	PR		PR	X	XX	X	X	PR		PR	PR		X	X		St.
																Stichopus variegatus	
61.0	59.0	71.0	80.0	76.0	73.5	69.5	£85					68.0	<u>8</u>	200	72.5	Thelanota anax	
																Thelanota ananas	
																Black sandlish*	
																Blackfish*	
																Bohadschia argus	
																Bohadschia marmorata	
																Bohadschia graeffei	
								31.5								Holothuria atra	
																Holothuria fuscogilva	
																Holothuria nobilis	
										57.5						Holothuria fuscopunctata	
									42.0		31,0	25.0				Holothuria edulis	
																Pinctada maxima	

Appendix 2i. Raw data for shallow habitat, Survey 3, July/August, 1995. Rep = relicate number, Obs = initials of observer, * indicates uncertain identification

Group	Island	Sin	Re	ep Obs							S	pecies		_	9								
					Tridacna maxima	Tridacna gigas	Tridacna derasa	Tridacna sqamosa	Tridacna crocea	Hippopus hippopus	Sichopus chloronotus	Bohadschia graeffei	Rohadschia agrus	Holothuria atra	Actinopyga mauritaniana	Brown stonefish *	Tectus pyramis	Trochus niloticus	Pinciada margariifera	Holothuria nobilis	Actinopyga miliaris	Thelanota ananas	Thelanota anax
Waghena		1 :	51	1 PR	1							2				_	1						
				2 PR 3 PR	2 2				4			1		1			1						
				3 PK 4 NK	- 2				3 2								2						
				5 NK	3				2			1			1								
				6 NK	1									1	_								1
		:	52	1 PR 2 PR	2 1										1		1						
				3 PR	2												1						
				4 NK													1						
				5 NK	1												2 2		1				
			33	6 NK 1 PR	1												÷						
		•	,,	2 PR													1						
				3 PR													1						
				4 NK	3												1						
				5 NK 6 NK													3						
		9	54	1 PR	3												_						
				2 PR	1												1						
				3 PR 4 NK	2 2												2						
				5 NK	_												1						
				6 NK	1																		
	2	2 9	S5	1 PR	2												1						
				2 PR 3 PR	4																	1	
				4 NK	1													1	1			•	
				5 NK	1												2 1						
			66	6 NK 1 PR	1												1				1		
		•	50	2 PR	2												•						
				3 PR	2 5														1				
				4 NK	1			1															
				5 NK 6 NK	1 1														i			•	
		9	57	1 PR	2																		
				2 PR	5												1	1					
				3 PR	2				1														
				4 NK 5 NK				1												1			
				6 NK	2																		
		5	8	1 PR	1												_						
				2 PR 3 PR	2 4												1						
				4 NK	1						1												
				5 NK	2												1						
			.0	6 NK	2	1											1						
Amavons	3	. 2	9	1 PR 2 PR	2 3							1					1	1					
				3 PR	5												1	1					
				4 NK	2												2	_					
				5 NK 6 NK	1												2	1 2					
		Si	0	1 PR	4												1	-					
				2 PR	2		1			1													
				3 PR 4 NK	2												11						
				4 NK 5 NK	1 1			1									1						
				6 NK	1												1						
ĺ																							

हा क्षा कर कर के किया है। जिस्सा के किया किया किया किया किया किया किया किया	Group
	lsi and
S11 S12 S12 S13 S14 S14 S14 S15 S16 S16 S17 S17 S17 S17 S17 S17 S17 S17 S17 S17	
321654321654321654432116544432116544444444444444444444444444444444444	Rep Obs
	Tridacna maxima
	Tridacna gigas
13 13 E E	Tridacna derasa
- 10	Tridacna sqamosa
2	Tridacna crocea
_ w	Iridacna crocea Illippopus hippopus Stichopus chloronotus Rohadschia graeffei
w 13	Stichopus chloronotus
υ ν ω	Bohadschia graeffei
	Bohadschia agrus
- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	Holothuria atra
F F	Actinopyga mauritaniana
-	Brown stonefish *
	. Tectus pyramis
. 2	Trochus niloticus
_ -	Pinciada margaritifera
	Holothuria nobilis
	Actinopyga miliaris
	Thelanota ananas
	Thelanota anas

Appendix 2j. Length-frequency data for shallow habitat, Survey 3, July/August 1995 Specimen = replicate, * indicates uncertain identification.

Wighean I SI I PR 4.0	Group	Island	Site	Specimen	Ohs										Specie	×8									
Waghens				Number varies by site		Tridocne maxima	Tridama gipas	Trideons derass	Tridacna agamosa	Tridecna crocea	smicehily sredoubliss	Srichoyas chloronotus	Bohadschie greeffet	Bohadschie agras	Holotharis ett e	A dinopyge meuriteniene	Brown stonefish .	Techs pyramis	Frochus niloticus	Pinctada margaritifera	Thelenote aver	Thelanota ananas	Actinopyge miliaris	Holothurie nobilis	Holothuria edalir
2 PR 160 100 27.0 16.0 22	Waghena	1	Sı		PR						-														
3 PR 22.0 13.0 12.0 13.0 12.0 14 NK				2	PR					2.5 12.5			27.0		16.0										
4 NK 4.0 9.5 9.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10				3	PR					13.0 8.5															
S NK 245 125 36.0 31.5 16.5 11.0 S2 1 PR 21.0 29.0 30.0 2 PR 14.0 3 PR 30.0 5 NK 21.0 6 NK 22.0 20.5 33.0 S4 NK 22.0 21.0 22.5 33.0 S4 NK 22.0 23.5 34 NK 22.0 25.5 35.0 S5 1 PR 14.0 2 PR 13.0 11.0 2 PR 13.0 16.0 17.0 2 SS 1 PR 24.0 26.0 16.0 14.0 4 NK 16.0 5 NK 21.0 6 NK 25.0 26.5 5 S6 2 PR 12.0 27.0 4 NK 20.0 28.5 5 NK 21.0 6 NK 25.0 26.0 11.0 2 PR 12.0 26.0 27.0 28.5 58 1 PR 24.0 29.0 29.0 20.0 2				4	NK					4.0															
6 NK 15.0 44.0 74 S2 1 PR 21.0 29.0 2 PR 140 3 PR 30.0 29.0 12.5 5 NK 12.0 12.5 6 NK 27.0 12.5 33.0 16.0 11.0 2 PR 13.0 16.0 11.0 2 PR 13.0 5 NK 28.0 27.0 5 NK 28.0 49.0 SS 1 PR 24.0 49.0 SS 1 PR 24.0 49.0 15.0 14.0 12.0 13.0 5 NK 25.5 S6 2 PR 12.0 12.0 1 1.0 2.0 12.0 1 1.0 2.0 12.0 1 1.0 2.0 12.0 1 1.0 2.0 12.0 1 1.0 2.0 12.0 1 1.0 2.0 12.0 1 1.0 2.0 12.0 1 1.0 2.0 12.0 1 1				5	NK	16.5				12.5			36.0			31.5									
S2 1 PR 21.0 29.0 300 2 PR 140 3 PR 30.0 2 2.0 5 NK 120 31.0 29.5 33.0 54 NK 29.0 29.5 33.0 54 1 PR 13.0 16.0 11.0 2 PR 13.0 16.0 11.0 2 PR 13.0 3 PR 14.0 12.0 4 NK 28.0 27.0 6 NK 27.0 28.0 16.0 16.0 17.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28				6	NK										44.0						74				
5 PR 30.0 29.0 5 NK 12.0 6 NK 20.0 20.5 33.0 S4 1 PR 13.0 16.0 11.0 2 PR 13.0 2 PR 13.0 2 PR 14.0 2 PR 14.0 2 PR 15.0 3 PR 14.0 2 PR 15.0 3 PR 14.0 2 PR 24.0 3 PR 12.0 3 PR 13.0 3 PR 13.			S2	1	PR	21.0 30.0										29.0									
29.0 5 NK 21.0 6 NK 27.0 29.5 33.0 S4 1 PR 13.0 11.0 10.0 11.0 2 PR 13.0 12.0 3 PR 14.0 12.0 6 NK 22.0 27.0 6 NK 22.0 27.0 6 NK 20.0 55 1 PR 24.0 15.0 16.0 14.0 14.0 2 PR 13.0 5 NK 16.0 5 NK 21.0 6 NK 5.5 5 NK 21.0 6 NK 5.5 5 NK 21.0 6 NK 5.5 5 NK 21.0 6 NK 5.5 5 NK 21.0 6 NK 5.5 5 NK 21.0 6 NK 5.5 5 NK 12.0 11.0 27.0 7.0 2 PR 12.0 11.0 27.0 7.0 4 NK 26.0 26.5 5 NK 13.0 12.0 15.0 15.0 15.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5				3																					
6 NK 220 29.5 33.0 S4 1 PR 13.0 11.0 2 PR 13.0 11.0 2 PR 13.0 12.0 4 NK 28.0 27.0 6 NK 29.0 27.0 6 NK 20.0 15.0 15.0 16.0 14.0 4 NK 16.0 2 PR 12.0 16.0 16.0 14.0 2 PR 12.0 26.0 16.0 14.0 2 PR 12.0 25 S6 2 PR 12.0 11.0 2 PR 11.0 1 P						29.0														125					
S3 4 NK 29.0																				12.5					
16.0 11.0 2 PR 13.0 3 PR 14.0 12.0 4 NK 28.0 27.0 6 NK 20.0 SS 1 PR 24.0 15.0 3 PR 24.0 16.0 16.0 14.0 4 NK 16.0 5 NK 21.0 6 NK 5.5 S6 2 PR 12.0 11.0 3 PR 12.0 2.0 11.0 3 PR 12.0 2.0 11.0 5 NK 12.0 5 NK 12.0 6 NK 5.5 S6 2 PR 12.0 11.0 5 NK 20.0 11.0 5 NK 20.0 11.0 11.0 12.0 12.0 12.0 13.0 15.0 15.0 15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16			S3			29.0 29.5 33.0																			
3 PR 14.0 12.0 4 NK 28.0 27.0 6 NK 20.0 5S 1 PR 24.0 15.0 3 PR 24.0 26.0 16.0 14.0 4 NK 16.0 5 NK 21.0 6 NK 5.5 5 S6 2 PR 12.0 11.0 3 PR 12.0 11.0 27.0 7.0 4 NK 26.0 5 NK 13.0 6 NK 12.0 6 NK 12.0			54	1	PR	16.0																			
4 NK 28.0 27.0 6 NK 20.0 SS 1 PR 24.0 15.0 3 PR 24.0 26.0 16.0 14.0 4 NK 16.0 5 NK 21.0 6 NK 5.5 S6 2 PR 12.0 11.0 27.0 20 11.0 27.0 7.0 4 NK 26.0 26.5 5 NK 13.0 6 NK 12.0 S7 1 PR 11.0 17.0 2 PR 20.0 15.0 3 PR 20.0 15.0 2 PR 20.0 15.0 3 PR 18.0 10.5				2 3	PR PR	14.0																			
SS 1 PR 24.0						27.0																			
15.0 3 PR 24.0 26.0 16.0 14.0 4 NK 16.0 5 NK 21.0 6 NK 5.5 75 PR 12.0 11.0 2.0 11.0 27.0 7.0 4 NK 26.0 26.5 5 NK 13.0 6 NK 12.0 5 NK 12.0 5 NK 13.0 6 NK 12.0 7.0 7.0 4 NK 26.0 12.0 12.0 12.0 13.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12			SS	6 1																					
14.0 4 NK 16.0 5 NK 21.0 6 NK 5.5 7 1 PR 11.0 7 17.0 7 2 PR 20.0 11.0 27.0 17.0 2 PR 20.0 11.0 2 PR 20.0 11.0 2 PR 20.0 11.0 2 PR 20.0 11.0 12.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10						15.0 24.0 26.0																49	•		
5 NK 21.0 6 NK 5.5 S6 2 PR 12.0 11.0 3 PR 12.0 2.0 11.0 27.0 7.0 4 NK 26.0 6 NK 13.0 6 NK 12.0 S7 1 PR 11.0 17.0 2 PR 20.0 18.0 20.0 18.0 20.0 18.0 20.0 15.0 3 PR 18.0 10.5						14.0																			
6 NK 5.5 25 S6 2 PR 12.0 11.0 3 PR 12.0 2.0 11.0 27.0 7.0 4 NK 26.0 26.5 5 NK 13.0 6 NK 12.0 S7 1 PR 11.0 17.0 2 PR 20.0 18.0 20.0 18.0 20.0 15.0 3 PR 18.0 10.5																			12.0	13.0					
11.0 3 PR 12.0 2.0 11.0 27.0 7.0 4 NK 26.0 5 NK 13.0 6 NK 12.0 S7 1 PR 11.0 17.0 2 PR 20.0 18.0 20.0 18.0 20.0 15.0 3 PR 18.0 19.0				6	NK	5.5																	25		
3 PR 12.0 12.0 2.0 11.0 27.0 7.0 4 NK 26.0 26.5 5 NK 13.0 6 NK 12.0 57 1 PR 11.0 17.0 2 PR 20.0 18.0 20.0 15.0 3 PR 18.0 19.0			\$6	2	PR																				
11.0 27.0 7.0 4 NK 26.0 26.5 5 NK 13.0 6 NK 12.0 S7 1 PR 11.0 17.0 2 PR 20.0 18.0 20.0 15.0 3 PR 18.0 10.5				3	PR	12.0														12.0					
27.0 7.0 4 NK 26.0 26.5 5 NK 13.0 12.0 6 NK 12.0 57 1 PR 11.0 17.0 2 PR 20.0 18.0 20.0 15.0 3 PR 18.0 10.5 19.0																									
4 NK 26.0 26.5 5 NK 13.0 12.0 6 NK 12.0 57 1 PR 11.0 17.0 2 PR 20.0 18.0 20.0 15.0 3 PR 18.0 10.5 19.0						27.0																			
5 NK 13.0 12.0 6 NK 12.0 57 1 PR 11.0 17.0 2 PR 20.0 18.0 20.0 15.0 3 PR 18.0 10.5					NIP				26.5																
6 NK 12.0 S7 1 PR 11.0 17.0 2 PR 20.0 18.0 20.0 15.0 3 PR 18.0 19.0					NK NK				201											12.0					
17.0 2 PR 20.0 10.5 26.0 18.0 20.0 15.0 3 PR 18.0 19.0				6	NK	12.0																			
2 PR 20.0 10.5 26.0 18.0 20.0 15.0 3 PR 18.0 10.5			S7	1	PR	11.0 17.0																			
20.0 15.0 3 PR 18.0 10.5 19.0				2	PR	20.0 26.0													10.5						
3 PR 18.0 10.5 19.0						20.0																			
				3	PR	18.0				10.5															
				4	NK				12.0																

Group	Island S	iite '	Specimen	Ohs				Shalla	W. 3U	1469	3. IGIN	J C.		pecies					_					
огоцр	IBKIID -																							
			ä							•	a de la composition della composition della comp	Ţ	_		dinopyge meuriteniene				bedade mergeritifere		-	-2	:3	.53
			£ 64		Ė	3	3	2 most	ē		Hoven	Jane	2	e t	1	ę,	÷	onice	12.5	MEX	enena	iji.	not i	and a
			Number varies by site		Tribacno meximo	النظمته ونوت	Tridome derese	fridecne squmose	iridecne crocne	mdadiy radodijj	sichepus edoronotu	Bohadschin graeffri	iadochio egres	Solochuria atra	• Alde	ra stopefish *	fectus pyramis	Frochus miloticus	a specie	Thelanota anax	Thelenota enena	dinopyge milieris	fotoskuris nobilis	Nolotharis edalis
			Ž.		- 1	- F	žį.	<u> </u>	35	, ide	Sije	Bok	ą g	Holo	Agi	<u> </u>	<u>2</u>	Tree	ž	Ę	7	- Y	Hot	<u> </u>
			6	NK	17.0 24.0																			
		S8	1	PR	30.0																			
			2	PR	10.0 25.0																			
			3	PR	23.0																			
					11.0																			
					28.0 19.0																			
			4	NK	22.5						37.5													
			5	NK	13.5																			
			6	NK	22.5 13.5	16.0																		
			·		12.5																			
Amavons	3	S9	1	PR	28.0							32.5						6.4						
			2	PR	9.5 25.0																			
			•	•••	9.0																			
			_	20	20.0													10.4						
			3	PR	11.0 15.0																			
					12.0																			
					24.0 26.0																			
			4	NK	5.0																			
			_		32.0													7.0						
			5	NK	27.0													7.5						
			6	NK														6.5						
		610		PR	22.5													13.5						
		S10	1	FK	11.5																			
					13.0																			
			2	PR	11.0 20.5		11.0			15.0								12.1						
					26.5																			
			3	PR	19.0																			
			4	NK	27.0 32.0			8.0																
			5	NK	8.0																	•		
		S11	6 2	NK PR	26.5													14.1						
		211	2	rĸ														10.0						
			3	PR											31.0			11.1						
			4 6	NK NK	28.0	ı									22.0									
		S12		PR	15.0													6.0						
					30.0																			
			2	PR	18.0 8.0																			
			3	PR	15.0									43.0										
			4	NK	22.0 11.0	1			5.5															
			5	NK	11.0		30.0											10.0						
			6	NK	13.0	•																		
		S13	1 2	PR PR	17.5 16.5																			
			3	PR	32.0	1		28.0			28.0													
					28.0	1					32.5													
					25.6 32.0																			
					17.5																			
			4 6	Fran Fran	ci 16.5	;			4.0		28.0	1						13.5						
		S14		PR	16.0)			٧.٧		20.0	•												
					18.5	;																		

Suavanao	Group
6 0	Island
\$23 \$23 \$24 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25	Site 1
6 5 4 3 12 1 6 5 4 3 12 1 6 5 4 3 12 1 6 5 4 3 12 1 6 5 4 3 2 1 1 6 1 6 3 2 1 1 6 1 6 3 2 1 1 6 1 6 3 2 1 1 6 1 1 6 3 2 1 1 6 1	Rep Obs
משימטטיושיט יין יין אמט יין איין טייטט יין טייטט איי איין טייטט איי	w Tridacna maxima
-	Tridacna gigas
–	Tridacna derasa
- - - - - - - - - -	Tridacna sqamosa
2 - 5	Tridacna crocea Ilippopus hippopus Stichopus chloronotus Special Bohadschia graeffei Bohadschia agrus Ilolothuria atra
-	Hippopus hippopus
-	Stichopus chloronotus Sp
	Bohadschia graeffei
□	Bohadschia agrus
∟	Holothuria atra
	- Actinopyga mauritaniana
	Brown stonefish *
001 00 4 00 000	🕳 🕳 Tectus pyramis
	Trochus niloticus
	Pinctado margaritifera
	Holothuria nobilis
	Actinopyga miliaris
	Thelanosa ananas
	Thelanoto anaz

Shallow, Survey 3, abundance

Group	Island	Site	Rep	Obs							S	pecies											
•			•		Tridacna maxima	Tridacna gigas	Tridaena derasa	Tridacna sqamosa	Tridacna crocea	Hippopus hippopus	Stichopus chloronotus	Rohadschia gracffei	Bohadschia agrus	Holothuria atra	Actinopyga mauritaniana	Brown stonefish *	Tectus pyramis	Trochus niloticus	Pinciada margaritifera	Holothuria nobilis	Actinopyga miliaris	Thelanota ananas	Thelanola anar
		S3:	2	l NK	2				5	•							1	1					
				2 NK						1													
			;	3 NK	1				19								2						
				4 PR	2				17								1						
				5 PR					4								1						
				6 PR					5			1						1					
Total																							

	1.1.	Cita	Specimes	Obe				511011	OW. 30	πνθλ	J. 1811	An o		pecies									_	
Group	Island	Sile	>beamer	Uns.									•											
			ž								ā	't			dinopyge mounteniene				njere			-23	_	
			n by 1		ì	3	3	710	ğ	re ford	Siichopus chloronotu	ohadschia graeffri	į	ž	Nourt	A	÷	hicks	margaritifera	ğ	Hanas	dingryge milieris	fototherie nobelis	abeli
			Į		9 H	Fridacea gigas	Trislama derasa	apa an	ONE CTOCK	mladiye mladiy	5	in do	shadechie egrus	lolothuris atra	364	hown stonefish *	Tectus pyramis	Frochus miloticus		Thelanota anas	Thelenota enanai	of77£0	Jan je	Holothurie edulis
			Number vartes by ette		Iridacne maxime	Trideo	Tribled	Tridecne squmosa	7. J. J. J. J. J. J. J. J. J. J. J. J. J. J	ly day.	Stricte	A S	Roha	Holoti	Agin	Brown	78	Trock	Pinciada	The La	- P	Agis	foto	Holo
			2	PR	26.0 16.5														5.0					
			4	FK	29.0																			
			4	Mote	14.5 34.0																			
		S15		PR	22.5							20.0						13.1						
					25.0 15.0							23.5 29.0						11.9						
					22.5																			
					22.5																			
					19.0 22.0																			
			2	PR					13.0			22.0												
			3	PR	6.0 10.0																			
					18.0																			
			4	NK	17.0 17.0				7.5															
					13.5																			
			5	NK	14.0			11.0	12.0			27.0 30.0						9.0						
			6	NK	21.0							50.0												
					27.0																			
		S16	2	PR	35.0								27.0											
			3	PR	33.0													12.0						
			4 6	NK NK	25.0													12.0						
			·		25.0																			
	Ysabel	S12	1	PR	27.0 19.5	47.0				31.0				28.0										
	1 200Ct	. 31.	•	• • •	26.0									23.0										
					23.0									25.0 26.0										
			2	PR	26.0					22.0														
			3	PR	9.0 7.0									31.5										
			4	NK					4.5					29.0										
			5	NK						31.0		41.0		17.0 16.5		32.0								
			6	NK	14.5		23.0			51.0				22.5										
				20	26.0							29.0		23.0				4.3						
		S18	3 1 2	PR PR	25.0 15.0					23.5		27.0						•••						
					15.0						17.5													
			4	NK							45.0													
											43.0													
			.5 6	NK NK	18.0 15.0		42.0	23.0											9.0					
		S19		PR	8.0																			
					15.0 8.0																			
					28.0																			
			3	PR	9.0 15.0																			
					10.0																			
			4	NK	7.0 15.0																			
			5	NK	27.0				12.5															
									10.0 12.0															
			6	NK				9.5	6.0					23.0										
		S20) 1	PR	8.0			12.0	11.0					29.0										
		321	•		13.5				13.0															

Species	Shallow, Survey 3, length data

																																					Ç	Group
			S24								S23	}						į	ŝ							S21											A TITLE OF THE PERSON	Island Site
s,	. w 4		-	sa	•		4	w	2			•	w		4	ω κ	J		_	o		4	u		N	_	٥	•)	4		w		2		Number varies by sit	le š	Specimen
×	X R R		PR	Z			×	PR	PR		PR	×	×	į	Z	P ?	g	;	퓚	Z Z		Z	7	3	PR	R	Z	7		Z		R		PR			Ç	욹
26.0 I: 29.0 9.0	5.5 12.0 19.5		3.5 2.6	28.0 14.0	19.0	25.0	20.0	7 19.0	20.0	20.0	3.50	23.0	27.5	30.0	3 15	205	27.0	165	23.5	19.0	20.5	18.0	32.0			27.0 4	17.5	20.0	25.5			23.0	3.0	15.0		Trislactia maxima		
13.0	¥																								67.0 5	48.0				17.0 2 4:			94	. ~		Tridecne giges		
	36.0		4										2												56.0					43.0 43.0			9.0	50.0 39		Tridocna derasa		
#		B B	40.0 1										21.0							_												_	<u>. </u>	39.0 1	- -	Tridacna squmosa		
12.0 3.5	7.5	75 711.2										10.0				13.0				8.0								9.0	•	•					3.0	Tridecne croces		
			31.5																											31.0			26.0			Пірроры кірроры		
	28.0																															% .0		26.0		Stichopus chloronotu	•	
																							32.0		28.0	32.0										Bohadschie greeffei		
														Ş	3																					Bohadschia agrus		ျှ
																							36.0	5							į	38.	31.0	33.0		Holothuria etra	Ş	Species
																				30.0																Actinopyga mauritan	iene	
																																				Brown stonefish *		
																																				Tectus pyramis		
									6.0		7.3	,										14.0														Trochus niloticus		l
																												13.0	;							Pinciada margaritife	78	
																																				Thelanota arax		
																																				Thelanote ananas		
												•																								Actinopyga miliaris		
	8																																			Holothuria nobilis		
																																				Holothuria edulis		I

																																							Suavanao			Group	
		ţ	ççş								S31			,	S.				367	g							S28					S27			S26				7 S25			Island Site	
	ωN		_		,	.	٠,		w		,		э »				4 10	ديا .	22 -			٥	•	۸	4	₩ K			4 (ن م	2	•		4 4		o. √o				۵	Number varies by site	Speci	
	X X		Z F:		:	Z X	Z		PR	7	8 B	:	<u>z z</u>	P	g Z		<u>z</u> z	: P	PR ?	9		z	;	<u>z</u>	Z :	2 2	2 2	Z	Z :	<u> </u>	PR	2	ž	z. z.	2 3	z, z,	<u>:</u>		g P	ŀ		Special City	
				N				س س				-																										7	, ~			3	
	8	23	3 1%	<u>,</u> 2	.5	5 L	8.0	200	90	S 3		6.0	0	26.0	» >	1.0	30 0	80	18.0	5	ů	26.0	6.0	5 5	4.0	0.0	30	,	29.0	7.0	80	9 2	20	y v 2 0	;	18.0	•				Trideche mexime		
																																									Tridacna gigas		
																																									Tridacna derasa		
=																																									Tridecne squmose		Shallow, Survey 3, length data
2.01 2.01 2.01 2.01 2.01		. 2. 2.	•																																						Tridacna crocea		₩. Su
	33																																								Hippopus hippopus		Vey
																																									Stichopus chloronotus		l eg
																																									Bohadschia graeffei		ğ
																																								5.91	Bohadschia agrus	U	
																																			31.0						Holothuria atra	Species	
																								24.5	24.0				,	X					;	27.0		;	30		Actinopyga mauritaniana		
																																									Brown stonelish *		
																																									Tectus pyramis		
			20 A		,	•							0.0	9.2	10.0		0.17	:		10.7	11.0	13.0						12.4	15	11.7							8.5	0.11	8.6 7.5		Frochus niloticus		
																																									Pinctada margaritifera		
																																									Thelanote anax		
																																									Thelanota ananas		
												•																													Actinopyga miharis		
	L)																																								Holothuria notilis		
	ß																																								Holothuria edulu		ı

Group	Island	Site	Specimen	Ohs									s	pecies										
			Namber varies by site		Tridacna marima	Tribons gigas	Trideone derase	Tridecna agamosa	Tridacna crocea	mialiy mialiji	Sikhopus chlosonotus	Bohadschle graeffei	Bohadschie egrus	Holotharia atra	Activopyge meuriteniane	Brown stonesish .	Feebu pyranis	frodus niloticus	Pinctada margaritifera	Thelanote anar	Thelenote enemes	Actinopyza milioris	Holothuria nobilis	Holothur is edulis
			4	PR	16 12				4															
					12				11															
									10 4															
									8															
									10															
									6															
									11															
									6 8															
									12															
									10															
									13															
									8 7															
									7 10															
									10															
			5	PR					12															
									4															
									12															
			6	ממ					13 12			33.5												
			ь	PR					12 10			22.2						6.5						
									10															
									10															
									10															

Deep, Survey 3, abundance Appendix 2k. Raw data for deep habitat, Survey 3, July/August 1995.

Rep = replicate number, Obs = initials of observer, * indicates uncertain identification

	Amavons	Waghena
D10	2 D2 D2 D2 D2 D2 D2 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3	Island Site Kep Cos 1 D1 I PR 2 PR 3 PR 4 NK
5 4 3 12 1 6 5 4 3 12 R X X R R X X X R R X X X R R X X X R R X X X R R X	**************************************	2 P R S
group just		Stickopus variegatus
		Thelanota anax
		Thelanota ananas Black sandlish*
ю		Black (isb •
	سو من	Bohadschia argus
		Bohadschia marmorata
		Bohadschia graeffei
w - w - L - 10	1)	Holothuria atra
-		Holothuria fusco gilva
-		Holothuria nobilis
pes pes pes	νω	Holothuria fuscopunctata
⊷ ⊷		Holothuria edulis Pinctada maxima
		Brownstone (ish *
	·	

Group	Island Site	Rep Obs				_ , , ,	uivey	<i>5, 5</i> .	Spec									
•		-												Į.				
			24						Bohadschia marmorala	<u>:</u>		ritva	.53	Holothuria fuscopunctata	_			
			Srichopus variegatus	78Y	ranas	.		Bohadschia argus	Marie	Bohadschia graeffei	ara	Holothuria fuscogilva	Holothuria nobilis	dossny	Holothuria edulis	Pinctada maxima	Brownstone fish *	
			DA SA	ola an	e es	andfis	÷	chia	chia	chia	urio o	urio /	uria ı	uria f	uria (da ma	stone	
			ichop	Thelanota anax	Thelanota ananas	Block nandfish*	Black fish •	ohods	ohods	ohads	Holothuria atra	toloth	loloth	loloth	loloth	inde	rown	
		6 NK	<u> </u>	<u> </u>								_==	_==	_5_		<u> </u>	_=	
	D11	1 PR																
		2 PR 3 PR						1										
		4 NK																
		5 NK 6 NK												2				
	D12	1 PR												2 2 1				
		2 PR 3 PR									1	1		1				
		4 NK									٠							
		5 NK									_			1				
	4 D13	6 NK 1 PR									1			1				
	4 1013	2 PR		1										i				
		3 PR										1		1				
		4 FRAP 5 FRAP												•				
		6 FRAN		1							2							
	D14	1 PR 2 PR																
		3 PR		1								2 2						
		4 MOT.	,									2 1						
		5 MOT. 6 MOT.	1								1	,						
	D15	1 PR										1						
		2 PR 3 PR	1															
		4 NK																
		5 NK																
	D16	6 NK 1 PR	1								5							
		2 PR																
		3 PR 4 NK	1					1										
		5 NK	•								1	1						
	6 D15	6 NK												3				
Ysabel	5 D17	1 PR 2 PR	1 1															
		3 PR									2							
		4 NK 5 NK									1							
		6 NK									-						1	
	DIS	1 PR 2 PR		1								2 1						
		3 PR		•								•	1					
		4 NK										3						
		5 NK 6 NK																
	D19	1 PR																
		2 PR 3 PR																
		4 NK										2						
		5 NK 6 NK		1														
	D20	1 PR		•														
		2 PR										•						
		3 PR 4 MOT.	1									1						
		5 MOT	1									1						
	6 D21	6 MOT. 1 PR																
		2 PR																

		-		OL-					0.70,		Spec	ies							
Group	Island	Site	: K	cep Obs							Spec	w							
														_		Holothuria fuscopunctata			
					3						Bohadschia marmorata	Z		Holothuria fuscogilva) mac	_		
					gg.		201			186	ara.	lae	2	88	ili de	Ę	dulis	<u> </u>	5
					vari	ana	ě	48		ë	ia m	io 8	a a	ą o	ž.	, p	<u> </u>	Ē	= 2
					34	50	plot	5	.	tsch.	lsch.	tsch tsch	Ž.	Ě	E E	Į.	Į.	nda	9
					Siichopus variegatus	Thelanota anax	Thelanoia ananas	Black modfish*	Black fish*	Bohadschia argus	ofe	Bohadschia graeffei	Holothuria atra	lolo	Holothuria nobilis	lolo	Holothuria edulis	Pinctoda maxima	Brownstone lish
				3 PR	<u> 2</u>	<u> </u>				1		. 59		_					
				4 MOT						•	1								
				5 MOT															
				6 MOT															
		D	22	1 PR															
				2 PR			1												
				3 PR										1		1 4			
				4 NK										2		5			
				5 NK 6 NK									1	-		5 5			
		ח	23	1 PR															
		_		2 PR															
				3 PR															
				4 NK										1					
				5 NK	1														
		_		6 NK									1						
		D	24	1 PR 2 PR					1		1		1	1					
				2 PR 3 PR	1				•		•		-	•					
				4 NK	•				2				1						
				5 NK									1						
				6 NK	1	2													
Suavanao		7 D	25	1 PR						1									
				2 PR						1							2		
				3 PR 4 CHRI													2		
				5 CHRI		1													
				6 CHRI		1													
		Е	26	1 PR															
				2 PR									_	1					•
				3 PR		1							2 1						1
				4 NK															
				5 NK 6 NK		1													
		Г	27	1 PR		1													
		_		2 PR		1								3 5			1		
				3 PR										5			1		
				4 NK															•
				5 NK													1		
			120	6 NK 1 PR															
		-	28	2 PR													1		
				3 PR													2		
				4 NK													1		
				5 NK													1	1	
				6 NK															
		8 E)29	1 PR 2 PR		1				1						1	2		
				3 PR	1					•				1		1	_		
				4 NK															
				5 NK		1													
				6 NK													_		
		Ι)30	1 PR		1											2		
				2 PR		2													
				3 PR 4 NK	1	2 1													
				5 NK		1													
				6 NK		1								2					
		I)31	1 PR															
				2 PR															
				3 PR													1		
				4 NK 5 NK									1				1		
				2 175									•				-		

	Total	Group	
		Island	
	D32	Island Site Rep Obs	
	6 4 4 PR R		
	22	Stichopus variegatus Thelanota anax	
		Thelanota ananas	Deep
		Black sandfish* Blackfish*	yevins 'c
		Thelanota ananas Black sandlish* Blackfish* Bohadschia argus Bohadschia marmorata Bohadschia graeffei	3, abunc
		i I	dance
		Holothuria atra Holothuria fuscogiiva	
		Holothuria nobilis Holothuria fuscopunctata	
		Ifolothuria edulis Pinctada maxima	
		Brownstone lish *	
•			

Deep, Survey 3, length data
Appendix 21. Length-frequency data for deep habitat, Survey 3, July/August 1995
Specimen = replicate. • indicates uncertain identification.

			Amavons																																		-									Waghena	Washan		or other
			3 D9		ţ	<u>,</u>			D7						ç	?			•			D\$!													Ç	j					D3		;	מ	וט ו			
6 N.	3 PR	2 PR	1 PR	6 NK	2 PR	- 5 N	4 N.	2 PR	1 PR	5 3	^ + Z; 7	3 PR		2 PR	- 17		6 NK		5	^ * 2	3 PR	1 PR			6 NK	S NK		4 NK		0.77	3 00		2 PR			I PK		3 PR		2 PR		1 PR	6 NK	5 5	A N	5 F	2 00		openius.
	64.5	47.0																							57.0	51.0	54.0	59.5	52.0	66.0	30.0	71.0	60.0	52.0	50.0	57.0	52.0	70.0	49.0	72.0	490	59.0	51.5	67.5	62.0	69.0	Th.	chopus variegatus elanosa anax elanosa ananas	
						41.0		42.0																																					į	40.0	Bia Bia	ock sandfish*	
37	57.0 48.0	96	48.0			-	45.5		8 4	4			4.5	4																			4												•	0	Во	hadschia argus hadschia marmorasa hadschia graeffei	, contract of the contract of
39.0		Ē		į	43.0	-	is		56.0		36.0		45.0		44 o	3				34.0	36.0	37.0	35.0	45.0	39.5	37.0							43.0			0.10	:										Ho	loshuria asra loshuria fuscogilva loshuria nobilis	
46.0	49.5 50.0		48.0	40.5												40.5	32.0	43.0	43.5	À	43.0	46.0			44.5			47.0																			Ho	lothuria fuscopunctata lothuria edulis	
																																																octada maxima	

Deen	Survey 3,	length	data
 COOP,	JUIVEY J.	TOTISHIT	<u> </u>

Group	lsiand	Site	Specimen	Obs							5, 1671 S	pocies							
											_					9			
					age .		h			a	morafa	rffei		ogika	ŝ	pomede	.5	9	•
					vane	ा कमकर	anan .	dfish.		io arg	io ma	ia gra	ia aara	ia fuso	ia nobi	ia furo	ia edul	man	ae fish
					Stickopus variegatus	Thelanosa anax	Thelanota ananas	Block sandfish*	Blackfish*	Bohadschia argus	Bohadschia marmorata	Bohadschia graeffei	Holoshuria aera	Holothuria fuscogilva	Holothuria nobilis	O Holothuria fuscopunctata	Holothuria edulis	Pinctada maxima	Brownstone fish
	_		· · · · · · · · · · · · · · · · · · ·	. 22	<u> </u>					8	<u> </u>			=_		48.0			
		D10		1 PR					27.0 28.0				41.0 42.0				37.5		
									27.0				48.5 34.5						
													43.5						
													45.0 52.5						
												4	48.5						
													39.0 39.5						
				0 DD								•	47.5				40.0		
			;	2 PR 3 PR	51.5					41.0			46.5 46.0				48.0		
													50.0 50.0						
				4 NK	61.5							:	36.5						
				5 NK						31.5			45.0 35.0		31.5				
													46.0						
		D11	:	1 PR 2 PR						37.0 38.9									
				3 PR						34.0									
			I	6 NK												47.5 51.5			
		D12		1 PR												44.5			
			;	2 PR										48.5		35.0 37.0			
				3 PR 5 NK									54.5			49.5			
			1	6 NK								(60.0						
		D13		1 PR 2 PR		52.0										56.0 56.0			
			:	3 PR		52.0								41.5					
				4 Franc 6 Franc		48.0						:	50.0			53.0			
		D14											40.0						
		D14		2 PR 3 PR		54.5 56.5								44.5					
				4 Mote										52.0 39.0					
														40.0					
				5 Mote 6 Mote								•	26.5	43.0					
		D15		ı PR										48.0					
				2 PR	60.0									46.5					
			(6 NK	46.5														
		D16		1 PR	47.0								46.0 41.0						
													44.0 43.0						
													48.0						
				2 PR 3 PR				,	34.5	22.0									
				4 NK	48.5														
				5 NK 6 NK								4	41.5	43.5		49.0			
																50.0			
Ysabel		D17		1 PR	59.5											48.0			
				2 PR	52.0														

- ..

Deep, Survey 3, length data Species Group Site Specimen Obs Island 35.5 3 PR 55.0 46.0 5 NK 6 NK 40.5 D18 1 PR 75.0 39.5 44.0 2 PR 69.0 45.0 3 PR 38.0 4 NK 42.5 42.0 36.5 44.5 1 PR D19 44.0 3 PR 42.0 4 NK 43.0 6 NK 62.0 43.0 3 PR D20 45.0 4 PR 49.0 49.5 5 Mote 50.5 2 PR 48.0 D21 50.0 36.0 3 PR 4 Mote 33.0 51.0 6 Mote 44.0 52.0 D22 1 PR 53.0 2 PR 66.0 3 PR 44.0 57.0 4 NK 54.5 53.0 45.0 48.0 39.0 46.5 5 NK 47.0 47.0 39.0

									51.0	
		6 NK					45.0		53.0	
							50.5		52.0	
									48.5	
									44.0	
									54.5	
									48.0	
									51.0	
									39.5	
	D23	4 NK						43.5		
		5 NK	47.0							
	D24	1 PR		60.0			44.0			
	52 7	2 PR		V	39.0	31.0		52.0		
		3 PR	56.0		33.0	21.0		52.0		
		4 NK	50.0		33.0		32.0			
		7 1410			25.0		20.0			
		5 NK			25.0		42.5			
		6 NK	540	55.0			74.5			
		OIN	34.0	62.0						
C	7 006	1 00		02.0	34	0				
Suavanao	7 D25	1 PR			36.					
		2 PR			33.	·U				20.0
		3 PR								28.0
										29.0
		4 Chris								17.0

Deep, Survey 3, length data

								Dec	ep, St	IVey			data						
Group	Island	Site	Specimen	Obs							\$	Species							
											_					5			
					ā					_	Bohadschia marnorata	Z		ika		Holothuria fuscopunctata			
					Stickopus variezatus	ŧ	anas	*		Bohadschia argus	9	Bohadschia graeffei	5	Holothuria fuscogilva	Holotharia nobilis	dog	dulis	ama	Brownstone fish *
					3	9	6	Ę	*	hia	Acio n	Aio (ġ.	rio fe	ig.	rio fe	<u>19</u> .	ma.	ĕ
					e de	Тне!апока апах	Thelenota ananas	Black sandfish*	Blackfish*	adec	adec	Ą	Holothuria atra	othu	of Par	oolu	Holothuria edulis	Pinctada matima	ži s
						26	ř	å	<u></u>	180	- TO	18	10.F	Hot	74	70 2	1011	<u> </u>	<u> </u>
				5 Chris		62.0													
			ı	6 Chris		60.0													
		D26		2 PR		57.0 50.0								45.0					
		D20		3 PR		56.5							44.0	45.0					25.0
			,										40.0						20.0
				4 NK									42.0						
				6 NK		51.0													
		D27		1 PR		65.0													
			;	2 PR		63.0								47.0			37.0		
						67.0								56.0					
				מת ב										42.0			24.0		
			•	3 PR										46.0 43.0			34.0		
														48.0					
														48.0					
														48.0					
														43.0					
			;	5 NK													32.0		
		D28		2 PR													21.5		
			;	3 PR													30.0		
				4 3772													27.0		
				4 NK 5 NK													28.0 34.0	24.5	
		D29		1 PR		62.5											34.0	24.5	
				2 PR	62.0	05.0				40.0					4	8.0	28.0		
			·	- • • •													32.0		
			;	3 PR										41.0	5	1.0			
			:	5 NK		60.0													
			(6 NK		60.0													
						46.0													
						61.0													
						48.0 55.0													
		D30		1 PR		52.0											39.5		
		200		• • • •													35.0		
			:	3 PR	66.0	72.0											-		
						50.0													
				4 NK		69.0													
				5 NK		59.5													
			•	6 NK		63.0								49.5					
		D31		3 PR										45.0			40 O		
		וכע		5 PK 5 NK									34.0				40.0 31.5		
		D32		PR		65.0							54.0				J1.J		
				2 PR		62.0													
				4 NK		60.0													
						57.0													
			:	5 NK										46.0					

Appendix 3. Asymmetrical ANOVA's for variates analysed from the shallow habitat.

Appendix 3a: Total number of species

C=ns, no transformation, alpha= 0.05

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	7.358	3.679	2.153	ns
Among Areas	3	127.090	42.363	NO TEST	
I vs C	1	1.447	0.362		
Among C	2	125.644	62.822		
Islands (Areas)	4	36.042	9.010	NO TEST	
I(A(C))	3	26.535	8.845		
I(A(I))	1	9.507	9.507		
Sites(I(A))	24	115.083	4.795	2.765	**
S(I(A(C)))	18	85.375	4.743	4.139	**
S(I(A(I)))	6	29.708	4.951	1.044	ns
T x Among Areas	6	10.254	1.709	0.824	ns
T x I vs C	2	8.133	4.067	1.059	ns
T x Among C	4	2.120	0.530	0.357	ns
T x Islands (Areas)	8	16.583	2.073	1.195	ns
$T \times I(A(C))$	6	8.903	1.484	1.295	ns
$T \times I(A(I))$	2	7.681	3.840	1.097	ns
T x Sites(I(A))	48	83.250	1.734	1.840	**
T x S(IA(C)))	36	41.250	1.146	1.216	ns
$T \times S(I(A(I)))$	12	42.000	3.500	3.710	***
Residual	480	452.330	0.942	0.942	

Appendix 3b: Total abundance of sea cucumbers

C= ns, transformation LogE(X+1), alpha= 0.05

Source of variation		SS			
	df	Real SS	MS	F-ratio	Sig
Time	2	0.135	0.068	0.041	ns
Among Areas	3	31.729	10.576	NO TEST	
I vs C	1	1.688	1.688		
Among C	2	30.042	15.021		
Islands (Areas)	4	23.014	5.753	NO TEST	
I(A(C))	3	15.451	5.150		
I(A(I))	1	7.563	7.563		
Sites(I(A))	24	50.694	2.112	2.892	**
S(I(A(C)))	18	47.931	2.663	3.626	**
S(I(A(I)))	6	2.764	0.461	0.173	ns
T x Among Areas	6	9.823	1.637	1.875	ns
TxIvsC	2	7.129	3.564	3.564	ns
T x Among C	4	2.694	0.674	0.811	ns
T x Islands (Areas)	8	6.986	0.873	1.196	ns
$T \times I(A(C))$	6	4.986	0.831	1.131	ņs
$T \times I(A(I))$	2	2.000	1.000	1.393	ns
T x Sites(I(A))	48	35.056	0.730	1.408	ns
$T \times S(IA(C))$	36	26.440	0.734	1.416	ns
$T \times S(I(A(I)))$	12	8.616	0.718	1.384	ns
Residual	480	249.000	0.519	0.519	

Appendix 3c: Total abundance of giant clams

Source of variation	df	SS	MS	F-ratio_	Sig
Time	2	7.837	3.918	0.538	ns
Among Areas	3	105.519	35.173	NO TEST	
I vs C	1	64.172	64.172		
Among C	2	41.347	20.674		
Islands (Areas)	4	449.660	112.415	NO TEST	
I(A(C))	3	445.319	148.440		
I(A(I))	1	4.340	4.340		
Sites(I(A))	24	1787.986	74.499	9.700	*
S(I(A(C)))	18	1701.556	94.531	11.673	*
S(I(A(I)))	6	86.431	14.405	0.152	ns
T x Among Areas	6	43.663	7.277	1.208	ns
T x I vs C	2	6.510	3.255	2.392	ns
T x Among C	4	37.153	9.288	1.226	ns
T x Islands (Areas)	8	48.194	6.024	0.784	ns
$T \times I(A(C))$	6	45.472	7.579	0.936	ns
$T \times I(A(I))$	2	2.722	1.361	0.212	ns
T x Sites(I(A))	48	368.639	7.680	1.555	
$T \times S(IA(C)))$	36	291.528	8.098	1.640	*
$T \times S(I(A(I)))$	12	77.111	6.426	0.794	ns
Residual	480	2370.167	4.938	4.938	

Appendix 3d: Total abundance of Tridacna crocea

C=sig, no transformation, alpha= 0.01

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	5.056	2.528	1.079	ns
Among Areas	3	140.450	46.817	NO TEST	
I vs C	1	37.042	37.042		
Among C	2	103.407	51.704		
Islands (Areas)	4	252.757	63.189	NO TEST	
I(A(C))	3	252.583	84.194		
I(A(I))	1	0.174	0.174		
Sites(I(A))	24	1503.097	62.629	29.014	*
S(I(A(C)))	18	1502.111	83.451	29.175	*
S(I(A(I)))	6	0.986	0.164	3.087	*
T x Among Areas	6	14.056	2.343	0.002	ns
T x I vs C	2	2.574	1.287	26.455	*
T x Among C	4	11.482	2.870	0.959	ns
T x Islands (Areas)	8	18.056	2.257	1.046	ns
$T \times I(A(C))$	6	17.958	2.993	1.046	ns
$T \times I(A(I))$	2	0.097	0.049	0.914	ns
T x Sites(I(A))	48	103.611	2.159	0.880	ns
$T \times S(IA(C))$	36	102.972	2.860	1.167	ns
$T \times S(I(A(I)))$	12	0.639	0.053	0.022	ns
Residual	480	1176.833	2.452	2.452	

Appendix 3e: Total abundance of Tridacna derasa

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	1.135	0.568	0.904	ns
Among Areas	3	9.514	3.171	NO TEST	
I vs C	1	0.750	0.750		
Among C	2	8.764	4.382		
Islands (Areas)	4	0.458	0.115	NO TEST	
I(A(C))	3	0.451	0.150		
I(A(I))	1	0.007	0.007		
Sites(I(A))	24	4.361	0.182	3.305	*
S(I(A(C)))	18	4.264	0.237	3.489	*
S(I(A(I)))	6	0.097	0.016	0.068	ns
T x Among Areas	6	3.767	0.628	6.345	•
T x I vs C	2	0.698	0.349	7.174	ns
T x Among C	4	3.069	0.767	6.630	
T x Islands (Areas)	8	0.792	0.099	1.800	ns
$T \times I(A(C))$	6	0.694	0.116	1.705	ns
$T \times I(A(I))$	2	0.097	0.049	2.995	ns
$T \times Sites(I(A))$	48	2.639	0.055	0.445	ns
$T \times S(IA(C))$	36	2.444	0.068	0.549	ns
$T \times S(I(A(I)))$	12	0.195	0.016	0.131	ns
Residual	480	59.333	0.124	0.124	

Appendix 3f: Total abundance Tridacna maxima

C= ns. transformation LogE (X+1), alpha= 0.05

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	0.814	0.407	1.386	ns
Among Areas	3	2.809	0.936	NO TEST	
I vs C	1	0.323	0.323		
Among C	2	2.486	1.243		
Islands (Areas)	4	14.353	3.588	NO TEST	
I(A(C))	3	14.183	4.728		
I(A(I))	1	0.170	0.170		
Sites(I(A))	24	19.123	0.797	2.156	•
S(I(A(C)))	18	10.070	0.559	1.924	ns
S(I(A(I)))	6	9.053	1.509	2.697	•
T x Among Areas	6	1.763	0.294	0.736	ns
T x I vs C	2	0.303	0.151	0.342	ns
T x Among C	4	1.460	0.365	0.949	ns
T x Islands (Areas)	8	3.194	0.399	1.080	ns
$T \times I(A(C))$	6	2.309	0.385	1.324	ns
$T \times I(A(I))$	2	0.885	0.442	0.730	ns
$T \times Sites(I(A))$	48	17.736	0.370	1.344	ns
$T \times S(IA(C))$	36	10.465	0.291	1.058	ns
$T \times S(I(A(I)))$	12	7.271	0.606	2.204	•
Residual	480	131.939	0.275	0.275	

Appendix 3g: Total abundance of Hippopus hippopus

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	0.219	0.109	1.800	ns
Among Areas	3	3.958	1.319	NO TEST	
I vs C	1	0.009	0.009		
Among C	2	3.949	1.975		
Islands (Areas)	4	3.181	0.795	NO TEST	
I(A(C))	3	3.174	1.058		
I(A(I))	1	0.007	0.007		
Sites(I(A))	24	5.972	0.249	3.468	*
S(I(A(C)))	18	4.319	0.240	5.271	*
S(I(A(I)))	6	1.653	0.275	1.148	ns
T x Among Areas	6	0.365	0.061	2.501	ns
TxIvsC	2	0.328	0.164	23.739	•
T x Among C	4	0.037	0.009	0.307	ns
T x Islands (Areas)	8	0.194	0.024	0.339	ns
$T \times I(A(C))$	6	0.181	0.030	0.661	ns
$T \times I(A(I))$	2	0.014	0.007	0.046	ns
$T \times Sites(I(A))$	48	3.444	0.072	0.771	ns
$T \times S(IA(C)))$	36	1.639	0.046	0.489	ns
$T \times S(I(A(I)))$	12	1.805	0.150	1.617	ns
Residual	480	44.667	0.093	0.093	

Appendix 3h: Total abundance Trochus niloticus

C=sig, no transfromation, alpha= 0.01

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	0.094	0.047	0.273	ns
Among Areas	3	7.589	2.530	NO TEST	
I vs C	1	0.047	0.047		
Among C	2	7.542	3.771		
Islands (Areas)	4	0.493	0.123	NO TEST	
I(A(C))	3	0.486	0.162		
I(A(I))	1	0.007	0.007		
Sites(I(A))	24	11.292	0.470	1.964	•
S(I(A(C)))	18	10.083	0.560	2.421	•
S(I(A(I)))	6	1.208	0.201	0.360	ns
T x Among Areas	6	1.031	0.172	1.193	ns
TxIvsC	2	0.753	0.377	1.937	ns
T x Among C	4	0.278	0.069	0.545	ns
T x Islands (Areas)	8	1.153	0.144	0.601	ns
$T \times I(A(C))$	6	0.764	0.127	0.550	ns
$T \times I(A(I))$	2	0.389	0.194	0.736	ns
$T \times Sites(I(A))$	48	11.500	0.240	1.295	ns
$T \times S(1A(C))$	36	8.330	0.231	1.250	ns
$T \times S(I(A(I)))$	12	3.170	0.264	1.427	ns
Residual	480	88.833	0.185	0.185	

Appendix 3i: Total abundance Bohadschia graeffei

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	0.149	0.075	2.633	ns
Among Areas	3	0.991	0.330	NO TEST	
I vs C	1	0.098	0.098		
Among C	2	0.894	0.447		
Islands (Areas)	4	2.118	0.530	NO TEST	
I(A(C))	3	1.424	0.475		
I(A(I))	1	0.695	0.695		
Sites(I(A))	24	15.681	0.653	3.789	*
S(I(A(C)))	18	10.847	0.603	6.008	*
S(I(A(I)))	6	4.833	0.806	1.337	ns
T x Among Areas	6	0.170	0.028	0.563	ns
TxIvsC	2	0.105	0.053	1.083	ns
T x Among C	4	0.065	0.016	0.318	ns
T x Islands (Areas)	8	0.403	0.050	0.292	ns
$T \times I(A(C))$	6	0.306	0.051	0.508	ns
$T \times I(A(I))$	2	0.097	0.049	0.125	ns
$T \times Sites(I(A))$	48	8.278	0.172	1.310	ns
$T \times S(IA(C))$	36	3.611	0.100	0.762	ns
$T \times S(I(A(I)))$	12	4.667	0.389	2.955	**
Residual	480	63.167	0.132	0.132	

Appendix 3j: Total abundance Holothuria atra

C= sig, no transformation, alpha= 0.01

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	0.510	0.255	1.000	ns
Among Areas	3	8.688	2.896	NO TEST	
I vs C	1	0.521	0.520		
Among C	2	8.167	4.083		
Islands (Areas)	4	10.083	2.521	NO TEST	
I(A(C))	3	10.083	3.361		
I(A(I))	1	0.000	0.000		
Sites(I(A))	24	37.167	1.549	5.068	*
S(I(A(C)))	18	36.861	2.048	5.276	*
S(I(A(I)))	6	0.306	0.051	0.025	ns
T x Among Areas	6	1.531	0.255	0.620	ns
T x I vs C	2	0.198	0.099	4.755	ns
T x Among C	4	1.333	0.333	0.615	ns
T x Islands (Areas)	8	3.292	0.411	1.347	ns
$T \times I(A(C))$	6	3.250	0.542	1.396	ns
$T \times I(A(I))$	2	0.042	0.021	0.360	ns
$T \times Sites(I(A))$	48	14.667	0.306	3.121	•
$T \times S(IA(C))$	36	13.972	0.388	3.964	•
$T \times S(I(A(I)))$	12	0.695	0.058	0.149	ns
Residual	480	47.000	0.098	0.098	

Appendix 4. Results of SIMPER analysis comparing habitat characteristics among Groups in the shallow habitat.

Appendix 4 Results of SIMPER comparisons between areas sampled in the shallow habitat. For each area, the average percent cover of habitat characteristics and their contribution (%) to differences between areas are given. These are listed for variables that primarily (up to 80%) contributed to differences.

Suavanao vs Arnavons	
AVERAGE DISSIMILARITY BETWEEN GROUPS = 32.	43

Species	% cover	% cover	Percent	Cumulative
	Suavanao	Arnavons	Contribution	Percent
Rubble	5.05	10.34	17.91	17.91
Soft coral	3.13	0.39	13.54	31.46
Sand	0.48	1.88	10.65	42.1
Thin encrusting	2.47	2.19	9.04	51.15
Massive/brain	2.84	2.78	8.27	59.42
Branching	1.92	0.13	7.38	66.8
Tabulate	0.37	0.48	7.02	73.82
Digitate	6.15	5.06	5.84	79.65

Waghena vs. Arnavons

AVERAGE DISSIMILARITY BETWEEN GROUPS = 38.67

Species	% cover Waghena	% cover Arnavons	Percent Contribution	Cumulative Percent
Sand	1.71	1.88	16.01	16.01
Thin encrusting	0.35	2.19	12.15	28.16
Rubble	9.59	10.34	10.27	38.44
Soft coral	2.24	0.39	9.59	48.03
Digitate	2.84	5.06	8.68	56.71
Sponges	1.39	0.23	8.33	65.03
Massive/brain	1.79	2.78	6.94	71.98
Tabulate	0.35	0.48	6.18	78.16

Ysabel vs. Amavons

AVERAGE DISSIMILARITY BETWEEN GROUPS = 42.15

Species	% cover	% cover	Percent	Cumultaive
•	Ysabel	Arnavons	Contribution	Percent
Sand	11.98	1.88	16.17	16.17
Rubble	37.69	10.34	13.43	29.61
Rock	30.44	71.55	9.64	39.25
Thin encrusting	2.31	2.19	8.78	48.03
Sponges	1.32	0.23	7.79	55.82
Massive/brain	2.32	2.78	7.6	63.42
Branching	1.23	0.13	6.9	70.31
Soft coral	0.95	0.39	6.89	77.21

Waghena vs. Suavanao AVERAGE DISSIMILARITY BETWEEN GROUPS = 42.15

Species	% cover	% cover	Percent	Cumulative
•	Waghena	Suavanao	Contribution	Percent
Thin encrusting	0.35	2.47	11.46	11.46
Rubble	9.59	5.05	10.78	22.24
Soft coral	2.24	3.13	9.43	31.66
Digitate	2.84	6.15	8.07	39.73
Massive/brain	1.79	2.84	7.28	47
Sponges	1.39	0.21	7.27	54.27
Sand	1.71	0.48	6.83	61.1
Branching	0.27	1.92	6.57	67.67
Halimeda	0.65	0.24	5.77	73.44
Others	0.9	0.26	5.22	78.66

Ysabel vs. Suavanoa

AVERAGE DISSIMILARITY BETWEEN GROUPS= 46.72

Species	% cover	% cover	Percent	Cumulative
	Ysabel	Suavanao	Contribution	Percent
Rubble	37.69	5.05	16.82	16.82
Sand	11.98	0.48	11.78	28.6
Rock	30.44	75.27	7.51	36.12
Soft coral	0.95	3.13	7.18	43.3
Halimeda	1.61	0.24	6.83	50.13
Thin encrusting	2.31	2.47	6.65	56.78
Sponges	1.32	0.21	6.24	63.02
Branching	1.23	1.92	6.23	69.25
Massive/brain	2.32	2.84	6.07	75.32

Ysabel vs. Waghena

AVERAGE DISSIMILARITY BETWEEN GROUPS = 49.17

Species	% cover	% cover	Percent	Cumulative
	Ysabel	Waghena	Contribution	Percent
Rubble	37.69	9.59	15.81	15.81
Sand	11.98	1.71	10.91	26.72
Rock	30.44	76.74	8.49	35.21
Thin encrusting	2.31	0.35	6.79	42
Digitate	6.69	2.84	6.42	48.42
Soft coral	0.95	2.24	6.33	54.75
Halimeda	1.61	0.65	6.25	61
Sponges	1.32	1.39	6.11	67.1
Massive/brain	2.32	1.79	5.66	72.77
Branching	1.23	0.27	5.26	78.02

Appendix 5. Asymmetrical ANOVAs for variates analysed from the deep habitat.

Appendix 5a: Total number of species of sea cucumber

C- ns no transformation, alpha=0.05

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	2.198	1.099	4.366	ns
Among Areas	3	8.839	2.946	NO TEST	
I vs C	1	5.672	5.672		
Among C	2	3.167	1.583		
Islands (Areas)	4	11.840	2.960	NO TEST	
I(A(C))	3	8.167	2.722		
I(A(I))	1	3.674	3.674		
Sites(I(A))	24	87.097	3.629	5.866	**
S(I(A(C)))	18	51.556	2.864	5.148	**
S(I(A(I)))	6	35.542	5.924	2.063	ns
T x Among Areas	6	1.510	0.252	0.775	ns
TxIvsC	2	0.510	0.255	36.719	*
T x Among C	4	1.000	0.250	0.581	ns
T x Islands (Areas)	8	2.597	0.325	0.525	ns
$T \times I(A(C))$	6	2.583	0.431	0.774	ns
$T \times I(A(I))$	2	0.014	0.007	0.009	ns
$T \times Sites(I(A))$	48	29.694	0.619	0.914	ns
$T \times S(IA(C))$	36	20.028	0.556	0.822	ns
$T \times S(I(A(I)))$	12	9.667	0.806	1.190	ns
Residual	480	324.833	0.677	0.677	

Appendix 5b: Total abundance of sea cucumber

C= ns, tranformation Log E(X+1), alpha= 0.05

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	1.046	0.523	4.398	*
Among Areas	3	3.277	1.092	NO TEST	
I vs C	1	2.361	2.361		
Among C	2	0.916	0.458		
Islands (Areas)	4	2.109	0.527	NO TEST	
I(A(C))	3	1.329	0.443		
I(A(I))	1	0.781	0.781		
Sites(I(A))	24	44.313	1.846	7.867	**
S(I(A(C)))	18	28.015	1.556	6.884	**
S(I(A(I)))	6	16.298	2.716	1.745	**
T x Among Areas	6	0.714	0.119	2.163	ns
T x I vs C	2	0.204	0.102	8.079	ns
T x Among C	4	0.509	0.127	1.842	ns
T x Islands (Areas)	8	0.440	0.055	0.234	ns
$T \times I(A(C))$	6	0.415	0.069	0.306	ns
$T \times I(A(I))$	2	0.025	0.013	0.049	ns
T x Sites(I(A))	48	11.266	0.235	0.800	ns
$T \times S(IA(C))$	36	8.139	0.226	0.770	ns
$T \times S(I(A(I)))$	12	3.127	0.261	0.888	ns
Residual	480	140.881	0.294	0.294	

Appendix 5c. Total abundance of Thelenota anax

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	2.042	1.021	2.297	ns
Among Areas	3	28.005	9.335	NO TEST	
I vs C	1	9.042	9.042		
Among C	2	18.963	9.482		
Islands (Areas)	4	41.896	10.474	NO TEST	
I(A(C))	3	41.556	13.852		
I(A(I))	1	0.340	0.340		
Sites(I(A))	24	51.764	2.157	4.904	**
S(I(A(C)))	18	49.889	2.772	5.132	**
S(I(A(I)))	6	1.875	0.313	0.113	ns
T x Among Areas	6	2.667	0.445	1.355	ns
TxIvsC	2	0.311	0.155	0.798	ns
T x Among C	4	2.357	0.589	1.581	ns
T x Islands (Areas)	8	2.625	0.328	0.746	ns
$T \times I(A(C))$	6	2.236	0.373	0.690	ns
$T \times I(A(I))$	2	0.389	0.194	1.400	ns
$T \times Sites(I(A))$	48	21.111	0.440	1.196	ns
$T \times S(IA(C))$	36	19.444	0.540	1.469	ns
$T \times S(I(A(I)))$	12	1.667	0.139	0.378	ns
Residual	480	176.500	0.368	0.368	

Appendix 5d: Total abundance of Stichopus variegatus

C=sig, no transformation, alpha= 0.01

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	0.014	0.007	0.136	ns
Among Areas	3	1.632	0.544	NO TEST	
I vs C	1	0.280	0.280		
Among C	2	1.352	0.676		
Islands (Areas)	4	0.389	0.097	NO TEST	
I(A(C))	3	0.139	0.046		
I(A(I))	1	0.250	0.250		
Sites(I(A))	24	7.194	0.300	2.590	*
S(I(A(C)))	18	3.806	0.211	2.660	*
S(I(A(I)))	6	3.389	0.565	2.671	ns
T x Among Areas	6	0.306	0.051	0.716	ns
TxIvsC	2	0.088	0.044	0.235	ns
T x Among C	4	0.218	0.054	1.679	ns
T x Islands (Areas)	8	0.569	0.071	0.615	ns
$T \times I(A(C))$	6	0.194	0.032	0.408	ns
$T \times I(A(I))$	2	0.375	0.188	0.835	ns
$T \times Sites(I(A))$	48	5.556	0.116	0.931	ns
$T \times S(IA(C))$	36	2.861	0.079	0.639	ns
$T \times S(I(A(I)))$	12	2.695	0.225	1.807	ns
Residual	480	59.660	0.124	0.124	

Appendix 5e: Total abundance of Holothuria edulis

C= sig, no transformation, alpha= 0.01

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	0.045	0.023	0.140	ns
Among Areas	3	9.505	3.168	NO TEST	
I vs C	1	0.130	0.130		
Among C	2	9.375	4.688		
Islands (Areas)	4	2.118	0.530	NO TEST	
I(A(C))	3	2.007	0.669		
I(A(I))	1	0.111	0.111		
Sites(I(A))	24	4.069	0.170	1.487	ns
S(I(A(C)))	18	2.986	0.166	1.287	ns
S(I(A(I)))	6	1.083	0.181	2.600	ns
T x Among Areas	6	0.969	0.161	1.755	ns
TxIvsC	2	0.441	0.221	7.946	ns
T x Among C	4	0.528	0.132	1.163	ns
T x Islands (Areas)	8	0.736	0.092	0.807	ns
$T \times I(A(C))$	6	0.681	0.113	0.880	ns
$T \times I(A(I))$	2	0.056	0.028	0.400	ns
$T \times Sites(I(A))$	48	5.472	0.114	1.168	ns
$T \times S(IA(C))$	36	4.639	0.129	1.321	ns
$T \times S(I(A(I)))$	12	0.833	0.069	0.712	ns
Residual	480	46.833	0.098	0.098	

Appendix 5f: Total abundance of Holothuria atra

C= sig, no transformation, alpha= 0.01

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	1.323	0.661	2.427	ns
Among Areas	3	47.130	15.710	NO TEST	
I vs C	1	44.403	44.403		
Among C	2	2.727	1.363		
Islands (Areas)	4	29.229	7.307	NO TEST	
I(A(C))	3	8.979	2.993		
I(A(I))	1	20.250	20.250		
Sites(I(A))	24	132.125	5.505	18.329	*
S(I(A(C)))	18	12.292	0.683	2.218	•
S(I(A(I)))	6	119.833	19.972	29.247	**
T x Among Areas	6	1.635	0.273	0.737	ns
T x I vs C	2	0.196	0.098	0.361	ns
T x Among C	4	1.440	0.360	0.894	ns
T x Islands (Areas)	8	2.958	0.370	1.231	ns
$T \times I(A(C))$	6	2.417	0.403	1.308	ns
$T \times I(A(I))$	2	0.542	0.271	0.975	ns
$T \times Sites(I(A))$	48	14.417	0.300	0.396	ns
$T \times S(IA(C))$	36	-11.083	0.308	0.406	ns
$T \times S(I(A(I)))$	12	3.333	0.278	0.366	ns
Residual	480	364.167	0.759	0.759	

Appendix 5g: Total abundance of Holothuria fuscopuntata

C=sig, no transformation, alpha= 0.01

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	0.170	0.085	0.259	ns
Among Areas	3	0.797	0.266	NO TEST	
I vs C	1	0.255	0.255		
Among C	2	0.542	0.271		
Islands (Areas)	4	10.688	2.672	NO TEST	
I(A(C))	3	10.511	3.504		
I(A(I))	1	0.176	0.176		
Sites(I(A))	24	48.208	2.009	5.483	*
S(I(A(C)))	18	45.278	2.515	5.982	•
S(I(A(I)))	6	2.931	0.488	0.194	ns
T x Among Areas	6	1.969	0.328	1.750	ns
TxIvsC	2	0.608	0.304	1.411	ns
T x Among C	4	1.361	0.340	1.909	ns
T x Islands (Areas)	8	1.500	0.188	0.512	ns
$T \times I(A(C))$	6	1.069	0.178	0.424	ns
$T \times I(A(I))$	2	0.431	0.215	1.057	ns
$T \times Sites(I(A))$	48	17.583	0.366	1.298	ns
$T \times S(IA(C))$	36	15.139	0.421	1.490	ns
$T \times S(I(A(I)))$	12	2.444	0.204	0.722	ns
Residual	480	135.500	0.282	0.282	

Appendix 5h: Total abundance of Holothuria fuscogilva

C=sig, no transformation, alpha= 0.01

Source of variation	df	SS	MS	F-ratio	Sig
Time	2	0.889	0.444	1.263	ns
Among Areas	3	2.181	0.727	NO TEST	
I vs C	1	0.083	0.083		
Among C	2	2.097	1.049		
Islands (Areas)	4	10.792	2.698	NO TEST	
I(A(C))	3	9.014	3.005		
I(A(I))	1	1.778	1.778		
Sites(I(A))	24	42.889	1.787	9.772	•
S(I(A(C)))	18	39.333	2.185	11.799	•
S(I(A(I)))	6	3.556	0.593	0.271	ns
T x Among Areas	6	2.111	0.352	1.206	ns
T x I vs C	2	0.667	0.334	0.632	ns
T x Among C	4	1.444	0.361	1.695	ns
T x Islands (Areas)	8	2.333	0.292	1.595	ns
$T \times I(A(C))$	6	1.278	0.213	1.150	ns
$T \times I(A(I))$	2	1.056	0.528	3.000	ns
$T \times Sites(I(A))$	48	8. <i>7</i> 78	0.183	0.410	ns
$T \times S(1A(C))$	36	6.667	0.185	0.415	ns
$T \times S(I(A(I)))$	12	2.111	0.176	0.395	ns
Residual	480	214.000	0.446	0.446	