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Box 1
Abstract
NOTATION:
Assuming a known length-weight relationship, the formula for i
calculating the mean weight from grouped length statistics is reca- Vl\‘l m¥ l:rglggthht

pitulated. Then a simple analytical method for calculating mean
weight from basic length statistics is developed which applies
when lengths are approximately log-normally distributed or when
normally distributed with a cocffident of variation (sd/mcan) less
than ca. 1/3. The method can be applied to other length distribu-
tions as well provided that the coefficient of variation is small.

Introduction

In fish stock assessment, biologists frequently
need to compute mean population characteristics
based on measurements of individual fish. How-
ever, “average” fish do not exist and bias is often
introduced in the computation of averages.

The main problem here is caused by the
nonlinearity of the length-weight relationship. As an
example, suppose the mean weight of a group of
individual fish of average length 25 cm is required.
Assuming, for simplicity’s sake a length-weight rela-
tionship with a = 0.01 (gem3), and b = 3, the
weight corresponding to the mean length of the fish
sampled becomes

0.01 g cm3 . 253 cm3 = 156.25 g

Now, the mean weight of a fish of average length
is usually not a good estimate of the mean weight
of the fish in the sample. In general, the greater the
variability in length, the more the truc mean weight
will deviate from 156.25 g.

Ricker (1975, p. 211) states that the true mean
weight is always greater than the weight corre-
sponding to the mean length of the fish sampled. It
will be shown below that this is not necessarily
true. Also, we shall examine the empirical length
distribution for any sample of fish before turning to
the situation in which a quick, analytically-derived
method for computing the mean weight of a group
of fish is required. Box 1 summarizes the notation
used in this paper.
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a constant of proportionality in the L-W relationship
(equals the condition factor when b=3)

exponent (power) in the allometric L-W relationship
total number of fish in sample (= N; + N, + Ny + ... +
N,)

fish number index (1,23,....N)

length class index (1,2,3,..,m)

dass length (= L, - L)

Zo

5 e e

dass midpoint (L; + h/2 = L;,, - h/2)

= E(X) expected value or mean of the variable X

standard deviation in the length distribution

variance in the length distribution: (see equation (8))

coeffident of variation in the length distribution (see

equation (6))

cocfficient of skewness in the length distribution (i.e.,

third central moment relative to standard deviation

cubed)

a  first parameter in log-normal length distribution, i.e.,
mean of In (L)

B second parameter in log-normal length distribution, i.e.

standard deviation of In (L).
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Allometric Growth
and Uniform Length Distribution

The weight of an individual fish can be obtained
from length using the empirical relationship:

W=a.Lb 1)

The mean weight of N fish can then be computed
as follows,

_ N N
W=N1. ):wi =a N1!.3% ij we2)
j=1 j=1

provided that the Ls, the individual lengths of all
N fish are known. Usually, fish are grouped in
length classes. In this case, the individual weights in
equation (2) are replaced by group weights, i.c.,
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W =N1.3INW, w3)

je]

where W is the mean weight of the N; uniformly
distributed fish in length class i. Beyer (1987)
showed that

— b+1
Wl =a- (b+l)-l . h-l . (Li:l - le+1) 0-04)

where L;designates the lower class limit of length
class i and h the class width. Then, inserting equa-
tion (4) in equation (3) gives

— m b=1
W =a- (b+1)l bl N T Ni(L;,,-LP*D)  .5)

isl

These equations do not utilize information that
may be available with respect to, say, the shape of
the histogram of lengths, i.e., the empirical distribu-
tion or the type and parameters of the length distri-
bution of the population from which the length-fre-
quency sample is supposed to be randomly drawn.

The usual measure of relative dispersion of mea-
surements is the coefficient of variation (C)? defined
as the standard deviation divided by the mean,
here estimated by

C=8/L wi6)
where the mean length (L) is estimated by
L= N"ZLj =N1IN, - L, «7)
i il
and the variance usually is obtained as

N - m _
S, = (N-I)T Z(L; L = (N-1)" EN(L;-LY w8)

el [0}

In the grouped empirical distribution, mean and
variance are usually computed by considering the
lengths of all N; fish in the i‘th class to be equal to
the class midlength.

Isometric Growth
and Symmetrical Length Distribution

Assuming the weight of a fish is given by al3,
the mecan weight in the population becomes

2This is normally abbreviated as “C.V.” and expressed as per-
centage, i.e., C.V. = s.d..100/X.
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W = aE(L3) ..9)

where E(L3) denotes the third moment in the length
distribution. Since we want to characterize the
length distribution by its central moments (i.e,, the
moments about L=E(L), the mean length) we rewrite
L3 as

L3 = L3 + 3LAL-L) + 3L(L-L)2 + (L-L)3 ..10)

Taking the expectation of both sides of this equa-
tion, and considering that E(L - L) = 0 and E(L -
L)) = 2, we obtain,

E(L? = L3[1 + 3(S/L? + (E(L-LP)/L3] .11
where the last term, the third central moment rela-
tive to mean length cubed may be expressed, alter-
natively, as C3.G, i.e,, C cubed multiplied by the co-
efficient of skewness.

Equation (11) is valid for any type of length dis-
tribution. In the special case of a symmetrical distri-
bution (i.e., skewness is zero) we obtain, multiply-
ing equation (11) by a,

W = al3[1 +3C2); C = S/L .12)

Box 2

A normally distributed length group has been identified with L =
25 an and S = 5 an, i.e. with a coefficient of variation of C = 5/25
or 20%. Our estimate of the mean weight for fish belanging to this
(age) group becomes, using equation (12) and assuming a=0.01 in
the isometric L-W relationship,

W=15625-(1+3-004)=175 g

In this case, the weight at mean length must be raised by 12% to
estimate the correct mean weight for the population.

Allometric Growth
and Log-Normal Length Distributions

If the logarithms of individual lengths are nor-
mally distributed with mean a and variance p2 then
the lengths are log-normal distributed with mean
and variance:

L2 = expla + 12 B?) ..13)
$2 = L2 (exp(P?) - 1) 14)

Given
InW=Ina + blnL ..15)
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it follows that the logarithm of weight also is nor-
mally distributed with mean In a + ba and variance
b?B2. Using these parameters for weight instead of
o and B2 for length as in equation (13), we obtain
directly the mean weight:

W = exp (Ina + bo + 172 b2p2)
a - exp( bla + 1/2 B?) + 172 b(b-1)p?)

or, inserting eqzuations (13) and (14) on the form
exp(p) =1+ C

W=all( + Cv2b®D, =g/ ...16)

This expression is also valid for a number of dis-
tributions apart from the log-normal if C<<1.

Box 3

If lengths are log-normally distributed, and L = 25 cm, and C = 0.2
we have from equation (16)

W = a 25b (1 + 0.04)2 b1

In the spedial case of isometric growth (Box 2) we obtain

W =15625-(1 + 0043 = 17576 g.

Due to positive skewness, a log-normal length distribution will
always give a slightly higher mean weight than a normal distribu-
tion with the same mean and C. In the present example, with a
small C, the percentage increase is less than 1/2% (see also Box 2).
This illustrates the general validity of equation (16).

From the log-normal variance, equation (14), the
same procedure, substituting the length paramcter B
with the weight parameter bp, yiclds the variance of
weight:

— 2 -
Sw2=W2[(1+CH-1];C=5/L w17)

These expressions for the mean and variance in
the weight distribution are exact for any L-W rela-
tionship and thus give the weight characteristics as
a function of the log-normal length statistics.

Allometric Growth
and Normal Length Distribution

In practical work with log-normal (length) distri-
butions, it is generally accepted that (both log-
length and) length is normally distributed as long as
the C is less than ca. 1/3 (Hald 1952, p. 164). For
such cases equations (16) and (17) can be used even
for normal length distributions.

A summary of the use of the three hitherto pre-
sented equations for calculations of mean weight is
presented in Fig. 1.

First Order Approximations

In cases where C2 << 1 a first order approx-
imation to equation (16) can be used as a good esti-
mate of the mean weight. Using (1 + x)Power = 1 4
x . power, where x is much smaller than unity (1),
we have

W=alb(1+12b®m1C;C<1/3 ..18)

With the same type of approximation we obtain
the standard deviation of weight from equation (17),

S,=b.C-W ;Cstis 19)
If the length sample consists of N fish, the stand-

ard deviation of W, the estimator of mean weight,
or the standard error becomes

>

(4]

g '\/\/\'\

L3

3

o

o

w

Length

Distribution: Uniform
E stimation: Eq.4

Length Length
L.og = normal Normal
£q.16 Eq.18

Fig. 1. Summary of three main length distributions and assodated equations for calculation of mean weights. If ¢ = s/L <
1/3, equation (16) can also be used for a number of other length distributions, including symmetrical ones. Equation (18)
gives a simple approximation to equation (16), applicable for most distributions with ¢ < 1/3.
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S = S,/YN =b CW /VN «20)

These expressions represent our final results.
Equation (18) gives the mean weight as a function
of the length statistics. It works for normal and log-
normal length distributions if C is about equal to or
less than 1/3, and for other distributions as well if
C is small.

Discussion

Ricker’s (1975) statement that the true mean
weight is always greater than the weight at mean
length is not necessarily correct. For example, in the
case of isometric growth, the two terms in equation
(11) for the second and third central moments may
cancel out. This happens

IF G.-C=-3 THEN EL}) = L3

That is, the product of the coefficients of
skewness and variation for length equals -3 in
which case W = gqL3 is exact. If G-C < -3 then W <
qL3. Such situations where the length distribution is
considerably skewed to the left (i.e., negative
skewness) are sometimes seen in pooled samples
from surveys, e.g., of larval fish.

For most practical assessments, however, Ricker's
statement is correct. Most distributions can be de-
scribed adequately by normal distributions (i.e.,
G=0), or by log-normal distributions (i.e., distribu-
tions with positive skewness).

For any L-W relationship, we have a simple ana-
lytical expression in equation (18) for the mean
weight in an approximative normal length distribu-
tion provided C is less than about 1/3,

W=all(+A);A=12bb1)C%C<1/3

For a given value of the power, b, and a certain
mean length, L, the relative error or bias, 4, by
using the weight at mean length is directly propor-
tional to the variance in the length distribution.
Thus, a doubling, say, in standard deviation in-
creases the relative error by a factor of 4.

The mean weight in equation (5) is obtained by
integrating the length histogram. The basic element
is equation (4) for the mean weight of fish uni-
formly distributed over a length class (Beyer 1987).
However, based on equation (4) it is difficult to dis-
tinguish between the effects of changes in the
power (b) and in the class length (h) on the mean
weight. It may therefore be noted that equation (18)
actually appears through a Taylor expansion of
equation (4) to the third order,
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Box4 o
| Equation (18) may also. be used: for compufa

' consideded is- (10,11), Le: 1=
; i3 specified' by 2=0.009
: 16.445525: as-the exact resy
' on is S? = h2/12. Fiom. equa

| of 16445524 reflecting:a' 7-diglt precision. Such 4 good
| tion is not achleved' because the length: distribu ,
v_ mainly because C hvaysuin!l (C=0.0275, l.e.{v

(14+x)P*1 = 1 + (b+1)x + 1/2bb+1)x2 + 1/6(b-Dbb+1)x3

where x= +h/(2L;) is small. Note that the variance
in the uniform distribution is h2/12. As a conse-
quence, equation (18) may in practice be used in-
stcad of equation (4). This is demonstrated in Box 4.
Likewise, equation (16) may be used instead of
equation (9) due to its general validity.

welght, for example, in a- uniformly: distributed

may use Example 2 in Beyer (1987):as an fllustratioi. The dass

Using equa

W = 0.009 - 1053% . (lea/2+ 3993 - 2103/012 - 1050, - -

If length is normally distributed then weight will
not be so. The distribution of weight will have posi-
tive skewness and show resemblance to a log-nor-
mal distribution (because continuing to multiply
identical distributions produces a log-normal distri-
bution). If length is log-normally distributed and
growth is allometric, weight will also be log-nor-
mally distributed.

Returning to the characteristics of a log-normal
distribution we note that equation (16), divided by
a, gives a simple and exact expression for any mo-
ment of a log-normal distribution. Thus, if a
(stochastic) variable X belongs to Log-N (,32), de-
noting the mean by E(X) = u and the variance by
Var(X) = 62, we have,

E(XP) = exp(bla+ 172 bf2)) = pP [1+(c/p)?Jw2®-D;

here p and o2 are the true (but usually unknown)
mean and variance which are estimated by X and
5,2, respectively, (as done throughout the text in
order to simplify the notation). When raw data are
grouped, the grouped variance (equation (8) right)
is (on the average) equal to the ungrouped variance
(equation (8) left) plus h2/12 where h is the class
length. The smaller the class length the smaller the
loss of information. With respect to the reliability of
statistical tests based on grouped data, the safe
maximum class length is determined by the vari-
ance. A useful rule is that the class length should
be smaller than the half standard deviation (i.e.,
h2<S%/4).
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Conclusions

If the allometric L-W relationship, W = aLb, is
known, then the mean weight of the fish in a sam-
ple can be calculated quickly by a simple formula
using length statistics only. Due to the nonlinearity
of the L-W relationship, the mean weight depends
on the relative variability ¢i.e., dispersion) of
lengths. The key parameter is therefore the coeffi-
cient of length variation, C.

In most length-based assessment work C < 1/3,
in which case the mean weight may be obtained
from equation (16) for most distributions.

The more the length distribution resembles a
symmetrical distribution (such as a normal or a uni-
form distribution) the less critical the assumption of
C < 1/3 becomes.

It is the power, b, which expresses the relation-
ship between variability in length and weight. For
approximative symmetrical distributions, we have
(cf equation (9))

Box 5

Pienaar and Ricker (1968) present a thearetical example with a=0.5
and b=3.3 for a sample of 16 fish drawn from a N¢100,100), nor-
mal(l)ﬁgtl\ distribution. The weight at mean length 100 becomes
051 or 1990536 which is an underestimate (-5%) of the mean
weight estimated from the sample (2090820), Noting that S2 =
133.33 (or S=11.547 based an the 16 length observations), the est-

mated C (11.547/100) squared is equal to 0.013333, As this is less:

than 1/3, equation (18) yields
W = 1990536 - (14172 33 - 23 - 0.013333) = 2091254

or only 0.45% more than 2081800, the mean weight estimated
from the sample. From equation (20) with N=16 we obtain the
standard error

Sz =33 - 0.1155 - 2091000 / 4 = 200000

This standard deviation measures on about the true mean
weight in the following (general) way: The interval (W-S,, W+S,)
or (1891000, 2291000) contains the true mean weight with a prob-
ability of 68%. In this simulation example we know the true mean
weight because the true variance of length is 100, i.e., C=0.01,
Hence, from equation (18), the true mean weight in the population
becomes W, ., = 2066000. This means that the interval (W, .. - S,
Wine + Si) or (1866000, 2266000) contains 68% of the W observa-
tions. The sample in Pienaar and Ricker produces only one obser-
vation of W which is 2081000 as noted above. If 100 simulations
were carried out (sampling 16 fish from the N(100,100) leng% dis-
tribution in each case) we would get 100 observations of W and
would expect 68 of these to be contained in the interval (1866000,
2266000). Of course, with 100 imes as many observations as in
this example we would be able to reduce the standard error and,
hence, the confidence intervals by a factor of 10. If the intervals
are constructed with 25 instead of Sg;, the interpretation is the
same, but with 95% probability instead of 68%.
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coefficient

coefficient
of W-variation

= b. [ of L-variation

This relation is also useful in expressing the pre-
cision obtained for the mean weight based on a cer-
tain number of length measurements (and assuming
an exact L-W relationship)

coefficient

coefficient
of W-variation

=b .ni/2 .[ of L-variation

where n is the number of length measurements.
Thus, if n = b2 or ca 10 then the relative error on
the mean weight is about equal to the coefficient of
variation in length. Box 5 deals with such a case in
which C,, = C = 0.10 or 10% implying that the true
mean weight is within £10% of the estimated mean
weight with probability 68%.

The problem discussed here is not specific to
tropical fish stock assessment but I hope that this
note illustrates the usefulness of obtaining simple
expressions on a closed analytical form by thinking
in terms of probability distributions and applying
various type of approximations.
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