e.g. fish yield parameters, the plan requires
a water quality checking pathway. If hy-
potheses about water quality, pond dynam-
ics or chemical/gas cycles and how these
impact fish are more important, a water
quality research pathway is followed (Fig.1).

Water Quality Checking

In water quality checking, basal and
routine (weekly) parameters are monitored
at stocking and harvesting fish. The two
most important basal parameters for fresh-
water fish culture are alkalinity and hard-
ness. These are not critical to fish health on
short time scales and change slowly over
most culture periods, unless regular liming
is being conducted.

Routine water quality monitors (on a
weekly basis) parameters that can change
rapidly and can dramatically affect fish
aealth and experimental treatments. Sur-
face water temperatures (at 2-5 cm depth)
and pH are measured weekly at 0500-0700
and 1400-1600 hours because of their cen-
tral positions as primary indicators of whether
toxic concentrations of ammonia or hydro-
gen sulfide occur. If the pH is out of the
range for good fish growth (6-8), or con-
ductivity, Secchi - disk visibility (SDV),
dissolved oxygen (DO), or observations ex-
ceed the limits shown in Fig. 1, further in-
vestigations are required. It is essential that

all routine water quality measurements be
conducted during the critical early-mom-
ing and late-afternoon (0500-0700 and 1400~
1600 hours) periods.

When adverse pH’s occur during a rou-
tine water quality checking program, test-
ing for concentrations of un-ionized hydro-
gen sulfide (H,S) or ammonia (NH,) is also
conducted. Fig. 1 details testing needs if:
pH’s are less than 6.0 (at 0500-0700 hours)
or greater than 8.0 (at 1400-1600 hours);
conductivities exceed 400 umhos/cm; SDV
falls below 10 cm; 0500-0700 hours DO
falls below 1 mg/l; and/or morning obser-
vations show fish gulping at the water sur-
face and a deep green water color.

Water Quality Research

DO and pH are the most critical parame-
ters to measure on a regular basis in aqua-
culture, especially in experiments using
high stocking densities close to the carrying
capacity of the system, or with high feed-
ing/loading rates of organic matter and during
warm seasons.

Water quality research should include
routine (daily) monitoring of DO, pH and
other parameters at 0500-0700 and 1400-
1600 hours (Fig. 1). Water temperatures are
taken at the surface (2-5 cm depth) and at

the pond bottom, in order to monitor pond
mixing dynamics. Full water quality moni-
toring involves weekly measurements of
inorganic nutrients important for primary
and total microbial production to determine
interactions among carbon and nutrient
pathways.

Monitoring special water quality para-
meters every two weeks allows complete
determination of organic and inorganic
pathways. For example, nutrient and silica
cycling, sulfur cycling, biological and chemi-
cal interactions and respiratory pathways
can be examined.

Suggested Further Reading

APHA (American Public Health Associa-
tion). 1989. Standard methods for
the examination of water and
wastewater: supplement to the sev-
enteenth edition. APHA, AWWA,
WPCF, Washington, DC.

Boyd, C.E. 1982. Water quality manage-
ment for pond fish culture. Elsevier
Scientific Publishing, Amsterdam.

Stirling, H.P., editor. 1985. Chemical and
biological methods of water analy-
sis for aquaculturists. Institute of
Aquaculture, University of Stir-
ling, Stirling, Scotland.

Is ANOVA Powerful Enough for Analyzing
Replicated Pond Experiments?*

Introduction

Aquaculture pond experiments, like
agricultural crop trials, are often designed
according to the statistical rules of replica-
tion and randomization: several treatments
are applied to a number of experimental
units (in this case: ponds) after which a
certain characteristic (e.g., yield) is meas-
ured in every pond. Other factors with a
possible effect on the measured character-
istic are held at the same constant level as
much as possible so as not to disturb treat-

*Presented at the Conference on “Research for
the Development of Tropical Aquaculture Technology
Appropriate for Implementation in Rural Africa”, 2-6
April 1990, ICLARM/GTZ-Malawi Department Aof
Fisheries-University of Malawi, Zomba, Malawi.
ICLARM Contribution No. 668.
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ment effects. Analysis of variance (ANOVA)
is used to compare the treatments.

Other things than the treatments alone
can cause differences between ponds. This
‘experimental error’ has to be estimated by
assigning the same treatment to more than
one pond: replication. Treatment effects
are ‘between group’ differences whereas
‘within group’ differences are ‘error’. If
there is much more variation between groups
than within, groups are obviously very dif-
ferent from each other and there may be a
significant treatment effect.

Randomization (random assignment of
treatments to ponds) is necessary because
the observations and the errors must be
independently distributed in order to test
hypotheses. The null hypothesis (H): “all
treatment means are equal’ is tested against
the alternative (H,): ‘the means are not
equal’.

H; can be true or false. The value o
indicates the probability of rejecting the
null hypothesis when H, is true. This mis-
take (rejecting H, although it is true) is
called a Type I error. The value of o is
usually set at 0.05 or even lower to ensure
that making a Type I error is very unlikely.

When H is false, the value B indicates
the probability of not rejecting H , which
would also be a mistake: this is called a
Type II error. Interestingly, a-levels are
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partial results from a
growth experiment in
earthen ponds at the Domasi Experimental
Fish Farm (DEFF) in Domasi, Malawi
(Chikafumbwa 1990). Tilapia rendalli were
stocked in nine 200 m? ponds at 2 fish per
m? and grown for 126 days under three
treatments: (1) with 14 kg/pond/week of
napier grass; (2) with 14 kg/pond/week
napier grass and madeya (maize bran), fed
at 3% of fish biomass per day, adjusted fort-
nightly; and (3) with madeya at 3% of fish
biomass per day, adjusted formightly. There
were three replicates of each treatment,
Results are presented in Tables 1-3.

At first sight, treatment 2 gave the best
result with about 50% increase in weight
gain over treatments 1 and 3 (Table 2). This
seems 1o be quite a large difference.

In the one-way ANOVA, the F-value for
treatment effect was 2.624, less than the
F(2,6)-value from the table (a=0.05). The
null-hypothesis was therefore not rejected
and despite their apparent size, we cannot
provethat the differences between the treat-
ments do exist. This is caused by large
within-treatment variability (one pond each
in treatments 1 and 3 yielded a result very
close to the average of treatment 2),

To determine the power, a quantity ¢
(phi) is defined (Zar 1984):

(k-1) (between groups MS)
= ' 1
¢ (k) (within groups MS)

with k = number of treatments. Using ¢ and

aspecial graph set of reference curves from
Zar (1984), the power (=1-B) can be deter-
mined (note that the ‘within groups MS’ is
equal to the experimental variance s2). With
k=3,

(2) (77.8924)
— = 1.32257
(3) (29.6870)

From the graph in Zar (1984), 1- =0.30 (at
0=0.05), therefore the power is 30%.

It is thus shown that, given this experi-
mental setup and the experimental vari-
ance, there is a 70% chance of making a
Type 1I error, or in other words, of not
rejecting Hy when it is false.

Another possibility is to specify the
smallest difference & (delta) that is to be
detected. ¢ is then calculated as (Zar 1984):

nd?

— @
(2k) (within groups MS)

with n = the number of replicates.

Suppose we wanted to detect a differ-
ence of 25% of the overall mean, i.e., of
4.19 g average weight gain. Then, follow-
ing equation (2),

3) 4.19%

— = 0.5438
(2) (3) (29.687)

A power of 80% means that ¢ = 2.3, hence

] (2) (2.3%) (3) (29.687)
n= i 54
4.19*

So the required number of replicates would
be 54 and (3) (54) = 162 ponds would be
needed to do this experiment!

This method can also be applied to more
complicated designs like a two-factor
ANOVA (see Zar 1984, section 13.7), and
also to other statistical tests like the t-test
and others (Peterman 1990).

Implications for Pond Research

Replicated, randomized experiments try
to eliminate disturbing factors as much as
possible before the effect of treatments are
measured. Unfortunately, controlling within-
treatment variability in fishponds turns out
to be very difficult. Pond experiments are
different from crop experiments in that the
foodchain in fishponds is much more com-
plex. Indirect feeding or fertilization treat-
ments affect the fish only after having passed
through several trophic levels. There are
thus lots of opportunities for disturbances
and error generation, and ANOVA’s can
easily result in non-significant findings.

Power analysis can help in assessing the
strength of our tests. It can be applied
before conducting an experiment to calcu-
late the sample size or the number of repli-
cates needed for detecting a certain effect
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size with a certain probability. It can also be
applied afterwards, when the null hypothe-
sis is not rejected, to find out how likely it
was to be rejected (a priori and a posteriori
power analysis, respectively, see Peterman
1990).

It scems that we are all very anxious to
avoid concluding that there is a treatment
effect when it is not true (avoid Type I
errors) but we don’t mind accepting a null
hypothesis that is not true (making Type II
errors). As the null hypothesis often repre-
sents the existing situation, this lack of
‘power awareness’ can easily lead to frus-
trated researchers, stagnating research and
ineffective data analysis. Alternatively, we
could look for techniques that utilize the
variability rather than try to minimize it in
a classical experimental design. The effect
of treatments on all trophic levels in ponds
could be measured and analyzed using
{nultivariate statistical techniques. In this
vay, the variability would be reduced sys-

tematically, rather than assumed-to-be-
absent-but-still-present, as it is in many
experiments. Another possibility is to lump
data from separate experiments together
and analyze the resulting dataset as a
whole. Although separate ANOVA’s for
individual experiments may not detect any
treatment effects, multiple regression models
can uncover many significant relationships
between variables (van Dam 1990; Prein
1985).
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Farmers’ Attitudes in Malawi to the Use of Excreta

Introduction

Fish farming is becoming increasingly
- oopular among smallholder farmers in

_ Central Malawi, particularly in Dedza and
Lilongwe Districts, as a source not only of
much needed high quality protein, but also
of cash income. A collaborative project
between the Malawi Department of Fisher-
ies, the University of Malawiand ICLARM,
financed by the German Agency for Tech-
nical Cooperation (GTZ), is seeking to
encourage farmers to use locally available
fishpond inputs. One possibility is to use
livestock or human excreta. This depends,
however, on the acceptability of the prac-
tice by farmers and the produce by consum-
ers. These are influenced by attitudes, be-
liefs and risk perceptions.

To identify the main impediments to
acceptability of fish raised in excreta-fed
ponds by smallholder farmers and to sug-
gest ways of encouraging excreta use in fish
farming, a survey of 112 fish farmers and
non-fish farmers was conducted in late 1988.
The team also used published and unpub-
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lished documentsandheld |

species stocked. Others are mlamba (Clar-
ias gariepinus), ntchila (Labeo mesops) and
mbamba (Haplochromis spp).

discussions with Ministry
of Agriculture (MOA) staff
to supplement this infor-
mation.

Fish farming is very new
in Central Malawi. It was
first introduced in Dedza
Hills in 1986, and in
Lilongwe Northeast in
1987. At the beginning of |
the study, there were 107
fish farmers in Dedza Hills
and 16 inLilongwe North-
east with a total of 134
ponds. However, only
about 40% were stocked.
Tilapias, locally called
chambo (Oreochromis
shiranus chilwae or Tilapia
rendalli) are the main

b

Students of the Bunda College of Agriculture, Malawi looking at a typical fish
pond in Dedza Hills. Most of the farmers use livestock wastes in fish farming.
(Photo by J.S. Likongwe)

Etdiants du Bunda College of Agriculture, Malawi, au bord d'un étang
d’élevage caractéristique de la région de Dedza Hills. La plupart des éleveurs
emploient des excréments d'animaux (Cliché: J.S. Likongwe)




