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A B S T R A C T   

Efficient use of inputs is crucial for sustainable aquaculture productivity growth, increased profitability, and 
improved livelihoods in developing countries. Studies have shown that women’s participation in decision- 
making (WPDM) can influence technical efficiency among agricultural crops farmers. However, rigorous 
empirical evidence in small-scale aquaculture is inadequate. Using data from 440 small-scale aquaculture 
households in the Ayeyarwady Delta region of Myanmar, this study: (a) measures technical efficiency using 
radial, non-radial and two-stage double bootstrap data envelopment analysis (DEA); and (b) examines the effect 
of WPDM on technical efficiency. Results reveal that most households perform 45–60% below the production 
frontier indicating they are not technically efficient. WPDM correlates with a significant increase in technical 
efficiency suggesting that women’s empowerment contributes to optimal use of inputs and improved on-farm 
aquaculture performance. Practicing polyculture and implementing climate change adaptation strategies 
correlate with enhanced efficiency. Practicing polyculture with compatible fish species allows advantageous 
interactions and coexistence which improve inputs utilization and reduce wastes. Judicious use of inputs as a 
strategy for addressing climatic shocks possibly explains the positive correlation between adaptation and tech-
nical efficiency. Together, the findings highlight the important need to promote interventions targeted at 
improving technical efficiency of small-scale aquaculture producers. Improving technical efficiency can reduce 
production costs, increase net farm income, and provide a sustainable supply of nutritious foods, a source of 
essential micronutrients such as vitamins and omega-3 fatty acids, and affordable animal-source protein. Pro-
grams and policies aimed at increasing aquaculture productivity would benefit by including interventions to 
reduce gender inequality and promoting equity.   

1. Introduction 

Small-scale fish farming was almost non-existent in Myanmar before 
the country embarked on the economic reforms in 2012 (Driel and 
Nauta, 2014). The reforms targeted poverty reduction and rural devel-
opment by introducing new agricultural policies promoting diversifi-
cation of smallholder agriculture, including fish farming (NESAC, 2016). 
The number of small and medium-scale aquaculture producers has since 
then expanded rapidly (Belton et al., 2015). Entry cost of small-scale 
aquaculture is low because farmers can modify rice fields and utilize 

unused backyard lands (Karim et al., 2020). Therefore, small-scale 
aquaculture development is an important and promising intervention 
to meet the growing fish demand and improve the livelihoods of poor 
and vulnerable households in rural Myanmar. 

Small-scale aquaculture sector faces many challenges including low 
adoption of improved production technologies and high costs of pro-
duction inputs. Therefore, it is imperative for them to improve the 
technical efficiency level, in order to better utilize the limited and costly 
resources, which will enhance fish farming performance and farm in-
come. In addition, optimal input use is very important for mitigating 
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environmental problems and ensuring the long-term development of the 
aquaculture sector (Long et al., 2020a; Iliyasu and Mohamed, 2016). 
Reinhard et al. (1999) defined that environmental efficiency is an 
input-oriented, single-factor measure of technical efficiency of the 
environmentally detrimental input. Although technical efficiency is a 
necessary condition for environmental efficiency, if a high level of 
environmentally detrimental inputs is employed, the high degree of 
technical efficiency could be compatible with a relatively low degree of 
environmental efficiency. Therefore, the extent of divergence between 
the two efficiency measures depends on how much the environmentally 
detrimental inputs can be substituted in the production process. 

Despite the potential of small-scale aquaculture for rural develop-
ment in Myanmar, a relevant question for agricultural policy makers is 
whether and how technical efficiency of the sector can be improved to 
achieve either the current output level with less inputs or more output 
with the current input levels. Answering this question is imperative and 
requires solid understanding of farmers’ current level of technical effi-
ciency and its determining factors. Most of the existing literature in 
aquaculture sector (e.g., Hai et al., 2018; Long et al., 2020a) analyzed 
technical efficiency of all inputs simultaneously, assuming that all inputs 
used in fish production can be reduced by the same magnitude. How-
ever, some inputs are more controllable than others. Therefore, ineffi-
cient farmers have better opportunities to improve their farm operations 
by optimizing specific input amounts (Ngoc et al., 2018). 

Women play a significant role as laborers or managers and decision- 
makers in aquaculture production and value chains (FAO, 2018). 
Women’s participation in aquaculture can contribute to improving 
households’ well-being (Weeratunge et al., 2010). Evidence shows that 
empowering women in agriculture generates multiple benefits. For 
example, empowering women can improve their status both inside and 
outside of the households, including participation in decision-making 
processes, access to and control over resources, and freedom of move-
ment, all of which may increase technical efficiency, agricultural pro-
ductivity, and food and nutrition security of the households (Seymour, 
2017; Bozoǧlu and Ceyhan, 2007; Zereyesus, 2017; Diiro et al., 2018; 
Wouterse, 2019; Adeyeye et al., 2019; Sell et al., 2018). Women’s active 
involvement in small-scale aquaculture activities has been shown to 
increase households’ income and food security (Aregu et al., 2017; 
Shirajee et al., 2010; Weeratunge et al., 2010). Furthermore, partici-
pation of women in small-scale fisheries has been shown to enhance 
welfare outcomes of both fishing households and employees (Liontakis 
et al., 2020). Sustainable improvement in the aquaculture sector’s pro-
ductivity and technical efficiency level depends upon the recognition of 
the crucial role women played in aquaculture activities (Luomba, 2013). 
For example, evidence in Cambodia showed that aquaculture ponds 
managed by women tend to generate higher yields than those managed 
by men. In some parts of China and Thailand, women bear the sole re-
sponsibility for aquaculture farm production because of male migration 
to cities (Kusakabe, 2003). Women have more knowledge in terms of 
management of aquaculture production activities such as cage prepa-
ration, pond maintenance, pond feeding, removal of unused feeds, 
procuring of good quality seed, and stocking of fish, leading to higher 
productivity and technical efficiency of fish farming (Ahmed et al., 
2012). 

Conceptually speaking, technical efficiency of small-scale aquacul-
ture is influenced by a combination of socioeconomic characteristics of 
farming households, farm characteristics, and environmental factors 
(Alam et al., 2012; Hai et al., 2018; Cinemre et al., 2006; Iliyasu and 
Mohamed, 2016; Singh et al., 2009; Tan et al., 2011; Onumah et al., 
2010). However, empirical evidence about the relationship between 
women’s empowerment and technical efficiency is missing in aquacul-
ture. Among different dimensions of women’s empowerment measure-
ment, household level decision-making, access to and control over 
household resources and freedom of movement are the most common 
proxy indicators (Malhotra et al., 2002). Recent methods for measuring 
women’s empowerment including the Women’s Empowerment in 

Agriculture Index (WEAI) by Alkire et al. (2013) and Women’s 
Empowerment in Livestock Index (WELI) by Galiè et al. (2018), incor-
porate decision-making as a key dimension of empowerment. The 
consideration of women’s participation in decision-making (WPDM) as a 
measurement of empowerment is also presented in Allendorf (2007) and 
Sariyev et al. (2020a, 2020b). In this study, intra-household decision--
making process is used as a proxy measurement of women’s 
empowerment. 

By and large, studies using decision-making domains as measure-
ments of women’s empowerment have considered only one out of many 
women household members, typically, the spouse of household head or 
one adult woman member. Peterman et al. (2015) have highlighted that 
involvement in the intra-household decision-making process can be 
considered an intrinsically meaningful empowerment dimension 
because all household members within a household have that right. In 
this case, because decisions are made through bargaining among all 
eligible household members, gender specific preferences are obtained 
and assessed in a more meaningful way than simply focusing on husband 
and wife’s decisions (Sariyev et al., 2020a). Consistent with these recent 
insights, this study considered all household member’s participation in 
the decision-making process to create an index capturing women’s 
participation in household’s decision-making (WPDM). 

Studies examining the effect of household’s characteristics particu-
larly age, experience and education on technical efficiency of aquacul-
ture production have generated mixed results. Man-headed households 
exhibit higher technical efficiency compared to woman-headed house-
holds because men tend to have better access to formal institutions and 
extension services than women due to societal and cultural norms (e.g., 
Oluwatayo and Adedeji, 2019). The effect of total household expendi-
ture appears ambiguous as it depends on fish producers’ preferences for 
investing capital into the aquaculture sector as opposed to the 
non-aquaculture sector (Alam et al., 2012). Access to extension services 
has been shown to positively influence technical efficiency (Cinemre 
et al., 2006; Iliyasu and Mohamed, 2016; Singh et al., 2009). Extension 
advice generates knowledge exposure necessary for optimal input use 
and improvement in general management of the farm. Evidence about 
the effect of pond size on technical efficiency is mixed; a few studies such 
as Cinemre et al. (2006) and Onumah et al. (2010) found a negative 
correlation while Tan et al. (2011) reported a positive relationship. Dey 
et al. (2010) indicated that integrated aquaculture and agriculture 
farming system is an effective production strategy for improving tech-
nical efficiency and productivity. Moreover, polyculture would have a 
positive effect on technical efficiency, as it encourages efficient input use 
and takes advantage of the beneficial interactions between compatible 
species cultured in the same pond (Halwart and Gupta, 2004). Adopting 
climate change adaptation practices such as water and soil conservation 
practices, improved irrigation systems and changes in cropping schedule 
and varieties, against climate change manifestations such as flooding, 
droughts and frosts, has been shown to correlate with increased pro-
ductivity and technical efficiency (Roco et al., 2017). 

Two popular techniques, namely the stochastic frontier analysis 
(SFA) and data envelopment analysis (DEA) are commonly used for the 
technical efficiency analysis. SFA is superior over DEA because it in-
cludes statistical noise into the frontier and allows for statistical tests on 
the efficiency estimates. However, the results of SFA can be sensitive to 
the parametric form chosen (Chavas et al., 2005). In contrast, DEA is 
preferred at times because it does not require any explicit functional 
form for the production function. The main advantage of DEA is that the 
technical inefficiency measure can be estimated for each observation 
(Forsund et al., 1980). In addition, the DEA method can not only identify 
sources and amounts of inefficiency in each input and output for each 
farm but also the efficient set used as a reference for these evaluations 
(Cooper et al., 2010). In the DEA approach, the efficiency of 
decision-making units is measured in two ways: input-oriented model 
and output-oriented model. Due to the scarcity and increase of inputs 
prices as well as the restrictions on land use for small-scale aquaculture 
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in Myanmar, input-oriented DEA method was used in this study to 
measure the minimum input level of the theoretically efficient farm at 
the given actual level of output with variable returns to scale (VRS) as 
proposed by Banker et al. (1984). Factors such as constraints on land 
use, inputs use and other socioeconomic limitations of fish farmers may 
cause the farm not to operate at an optimal scale practically. Therefore, 
in aquaculture studies, particularly in developing countries, VRS DEA 
model for production technology is often assumed (Zongli et al., 2017). 

Two common types of conventional DEA techniques from the input- 
oriented approach were applied in this study: radial and non-radial. On 
the one hand, the radial DEA model gives the same specified propor-
tional changes by which all outputs (inputs) are increased (reduced) 
simultaneously to become efficient and does not take into account slacks 
in resource usage directly. On the other hand, a non-radial DEA model 
known as the slack-based measure (SBM) of technical efficiency, gives a 
different proportion and can deal directly with slacks in the efficiency 
estimation (Tone, 2001). Simar and Wilson (2000, 2007) indicated that 
due to deterministic nature of conventional DEA, efficiency scores 
estimated are biased and serially correlated, consequently generating 
invalid statistical inferences in the second stage of the regression anal-
ysis. The efficiency scores estimated by finite samples are thus subject to 
sampling variations of the estimated frontier. To overcome the 
above-mentioned issues of the conventional DEA technique, Simar and 
Wilson (1998, 2000, 2007) have developed bootstrap procedures to 
introduce statistical foundation to the nonparametric frontier model. 

The objectives of this study are: (1) to measure the technical effi-
ciency of small-scale aquaculture using radial, non-radial and two-stage 
double bootstrap data envelopment analysis (DEA) methods; and (2) to 
examine the association between WPDM and technical efficiency. 

2. Methodology 

2.1. Data collection 

Our analysis relied on data from 440 small-scale aquaculture 
households collected during an on-farm aquaculture performance 
assessment baseline survey in 2019 under the project “Scaling systems 
and partnerships for accelerating the adoption of improved tilapia 
strains by small-scale fish farmers (SPAITS).” The project was imple-
mented by WorldFish in collaboration with Myanmar’s Department of 
Fisheries (DOF) and University of Hohenheim. A combination of strati-
fied, purposive and random sampling techniques was used to select 
study respondents. First, the Ayeyarwaddy Delta Region was selected as 
the study area because it is the main fish producing region in Myanmar. 
Second, three townships in the region namely Daydaye, Kyaiklatt, and 
Phyapon were purposely selected for the study. In these townships, 
another WorldFish’s project “Promoting the sustainable growth of 
aquaculture in Myanmar (MYFC)” has carried out activities to support 
the households to engage in small-scale aquaculture. During the SPAITS 
project baseline survey period, the MYFC project had five batches of 
farmers. However, farmers in one of the batches were new to aquacul-
ture and had not completed a fish farming cycle at the time of the survey. 
Therefore, these farmers were excluded from the sampling frame. A total 
of 1776 fish farming households in the remaining four batches of the 
MYFC project formed the sampling frame from which a random sample 
of 440 households was selected for the study. Among the total sampled 
households, 17 households had no harvest in the previous fish farming 
cycle and were dropped from the analyses, leaving a total of 423 
households for the analysis. 

The survey was conducted from May to July 2019. The questionnaire 
was pre-designed and pre-tested during an enumerator training held in 
May 2019. The questionnaire was developed in English, translated into 
Burmese, and programmed in Open Data Kit (ODK) for mobile data 
collection. The questionnaire consisted of different modules for an in-
tegrated aquaculture performance assessment, including household 
characteristics, biological, social, economic, and environmental aspects 

of fish farming, and the livelihoods and well-being of the fish farming 
households. 

2.2. Description of study variables 

Variables used in the bootstrapped truncated regression model were 
selected based on most aquaculture studies in developing countries. 
Household characteristics such as age (in years), household head gender 
(man = 1, woman = 0), and farming experience of household head (in 
years), education level of household members (years of formal educa-
tion), household’s annual total expenditure (USD), access to extension 
services (if a household had access = 1,otherwise = 0), and climate 
shocks (if fish farming was affected by climate shocks in the previous 
production cycle = 1, otherwise = 0) were included in technical effi-
ciency analysis. Aquaculture production practices applied by farmers in 
the study area such as, integrated aquaculture-agriculture (IAA) 
(household practiced IAA = 1, otherwise = 0), polyculture (house-
hold practiced polyculture = 1; otherwise = 0), climate change 
adaptation practices (household implemented any strategy to address 
climate risks = 1; otherwise = 0), and pond size (ha) were used to 
capture the impact of technology and management practices on the 
technical efficiency of fish farming. In regard to the social aspect of the 
aquaculture sector, WPDM as a measurement of women’s empowerment 
was expected to influence the technical efficiency positively. This aspect 
may also directly influence agricultural productivity through household 
members’ ability to organize and allocate resources (Mcpeak and Doss, 
2017; Sell and Minot, 2018). 

2.3. Methods and empirical models 

In this study, an input-oriented approach DEA model was adopted 
with the aim of using minimum feasible amount of inputs while 
retaining at the given output level. To estimate the overall and input- 
specific technical efficiency scores, this study applied radial and non- 
radial or slack-based DEA models. In addition, due to the biased and 
serially correlated technical efficiency scores derived from the conven-
tional DEA model criticized by Simar and Wilson (2007), a two-stage 
double bootstrap DEA technique was applied to estimate 
bias-corrected efficiency scores as well as the determinants consistently. 

2.3.1. Conventional DEA models (radial and non-radial or slack-based 
measure (SBM)) 

Given the output Y (fish harvested) and inputs set (seed, feed, fer-
tilizer, labor and other miscellaneous costs), the input-based technical 
efficiency of the DEA framework for the jth farms, TEj is defined as 

TEj =
min
θj ,λθj (1)  

subject to 

Yj ≤ Yλ,

θjXj ≥ Xλ,

λ ≥ 0  

∑N

j=1
λj = 1  

Where θj is the technical efficiency score with 0 ≤ θj ≤ 1. If θj = 1, the 
farm is technically efficient. The vector λ is an N x 1 vector of weights 
that defines the linear combination of the peers of the jth farm. The first 
constraint in Eq. (1) is with respect to the output of small-scale fish 
farming. Yj, tonnes (t) of fish harvested per farm in previous production 
cycle, is the actual level of output of the jth farm compared with the 
theoretically efficient farm (Yλ) output vector. The second constraint 
concerns the inputs of small-scale fish farming. Five main inputs used 
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per farm in previous production cycle, namely seed (number of finger-
lings), feed (t), fertilizer (t), total labor (person-days) and other 
miscellaneous costs (USD) are incorporated into the VRS DEA model in 
Eq. (1). θjXj represents the actual level of input used by the jth farm 
multiplied by its level of efficiency (θj). Xλ is the minimum input use of 
the theoretically efficient fish farms, given the actual level of output 
produced by the jth farm. If the solution in Eq. (1) is smaller than one, the 
quantity of input used by that particular fish farm can be reduced to as 
low as Xλ to produce the same level of output. If the solution in Eq. (1) 
turns out to be θj = 1, that particular small-scale fish farm’s inputs level 
is as small as the level of input used by the theoretically efficient farms at 
a given the same level of output. The third constraint in Eq. (1) is the 
convexity constraint, 

∑N
j=1λj = 1, for assuming the variable returns to 

scale (see for further details in Coelli et al., 2005). The model, as 
mentioned above, intends to proportionately reduce all inputs with a 
given output level. The efficiency score derived from this model is called 
the radial measure of technical efficiency score, but it cannot estimate a 
comprehensive efficiency measurement and lacks discriminatory power 
for individual input (Tone, 2001). 

In order to capture the percentage of reduction in the use of any 
individual input, a non-radial DEA or slack-based measure (SBM) of 
technical efficiency model was applied, the mathematical properties of 
which can be found in Tone (2001). The SBM of technical efficiency 
method was expressed as follows: 

minρ =
1 − (1/m)

∑m
i=1S−

i

/
xik

1 + (1/s)
∑s

r=1S+
r

/
yrk

(2)  

subject to  

xik =
∑n

j=1
xijλj + S−

i , i = 1, …, m  

yrk =
∑n

j=1
yrjλj − S+

r , r = 1, …, s  

λj ≥ 0, j = 1, …, n  

S−
i ≥ 0, i = 1,…,m  

S+
r ≥ 0, r = 1,…, s  

Where, ρ denotes the SBM of technical efficiency of decision making 
units (DMUs) associated with s output set yrk (s = different types of fish 
species) and m input set xik (m = seed, feed, fertilizer, labor, other 
miscellaneous costs); λj is a non-negative vector that allows the pro-
duction possibility set construction for DMUs j; n is the number of DMUs 
(j = 1,…n); S−

i and S+
r are denoted as slacks associated with inputs x 

(input access) and output vector Y (output shortfalls), respectively. 
S−

i = 0 implies no input excess and S+
r = 0 implies no output 

shortage for all i and r. We have the following formula to calculate any 
particular input efficiency derived from input-oriented SBM technical 
efficiency model (Haider et al., 2019): 

Input − specific technical efficiency =
OIU
AIU

=
AIU − IS

AIU
(3)  

where OIU is the optimal input use or input target, AIU is the actual 
input use, and IS is the input’s slacks value. In the slacked-based model, 
the percentage of reduction in each input to close the production frontier 
was captured by their associated slacks. 

2.3.2. Bootstrap data envelopment analysis (DEA) procedure 
Bootstrapping is a method of testing the reliability of a data set by 

creating a pseudo-replicate data set. The simple idea of the bootstrap 
procedure is resampling the data with replacement and simulating a true 

sampling distribution by mimicking the data generating process. The 
reason for using the bootstrap procedure is to generate bias-corrected 
technical efficiency (BCTE) scores and obtain consistent statistical 
inference within models explaining efficiency scores (see details in 
Simar and Wilson, 1998, 2000; Badunenko and Mozharovskyi, 2016). 
Following Simar and Wilson (2007) modified by Badunenko and 
Tauchmann (2019), the double bootstrap procedure was used to esti-
mate the technical efficiency scores from the input-oriented approach 
and identify the factors influencing the technical efficiency scores. The 
double bootstrap procedure is shown in details in Appendix A.1. Two 
main points should be considered when applying the double bootstrap 
procedure. First, steps 1–4 (the first loop of the double bootstrap DEA) 
are employed to estimate the bias-corrected efficiency scores. Second, 
the truncated regression analysis is conducted in steps 5–7 (the second 
loop of the double bootstrap DEA) to explain the factors influencing the 
bias-corrected efficiency scores. 

2.3.3. Principal component analysis (PCA) to generate the women’s 
participation in decision-making index (WPDMI) 

Although there are different dimensions of women’s empowerment, 
this study focused on the decision-making dimension only as a mea-
surement of women’s empowerment. In order to represent the decision- 
making in different decision domains, the data included the information 
about the decision related to many household level activities. Among the 
activities, priority was given to the decisions that are relevant for most of 
the selected households because all households are not engaged in the 
same activities. The index in this study was generated from seven de-
cision variables related to input use in fish production, harvested fish 
use, quantity and type of food consumed, land allocation, fish income, 
crop income, and livestock income allocation. In this regard, selected 
decisions were made by more than 90% of the selected households 
except decision in livestock income allocation (60% of the households) 
and therefore it reflects the most important decision-making variables 
for the households in the study area. In order to collect the accurate and 
required information, the respondents were asked who made the deci-
sion in the selected variables. This was followed by naming the house-
hold members and the response was cross-validated with the household 
roster. 

To generate an index using PCA technique, households were first 
assigned weights related to their respective decision domains based on 
women’s participation in the decision-making processes. Following 
Sariyev et al. (2020a), weights for each decision-making variable were 
calculated by the ratio of the number of women decision makers within 
the household to the total number of decision-makers in each decision 
domain. These assigned weights range between 0 and 1, with 0 indi-
cating no women participation and 1 indicating only women partici-
pation. Table 1 summarizes the different weights of each decision 
domain. 

3. Empirical results and discussion 

3.1. Descriptive statistics of the data 

Descriptive statistics of the variables included in the technical effi-
ciency and regression analysis are presented in Table 1. The average 
household head was 52 years old and had 3 years of small-scale fish 
farming experience. Both men and women household members had an 
average education level of 7 years. The total annual expenditure of 
households was 825.45 USD.1 About 93% of the sampled households 
were man-headed. 

The average quantity of fingerlings stocked, feed, fertilizer, labor 
used and other miscellaneous costs incurred per farm during the previ-
ous fish production cycle, were estimated at 478 fingerlings, 0.07 t, 

1 1 USD = 1518.34 MMK (July 31,2019). 
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0.06 t, 276 person-days and 11.92 USD, respectively. The average har-
vested quantity of all fish species per farm in the previous cycle was 
0.13 t. Regarding fish farming practices, 56% of fish farming households 
implemented integrated fish farming but only 2% of those households 
practiced the polyculture system. Three-quarters (75%) of sampled 
households had observed climate change events, including flood, erratic 
rainfall, storms/cyclones and extreme high temperature. These house-
holds also implemented adaptation strategies such as harvesting fish 
early, upgrading fish ponds, monitoring water quality, exchanging pond 
water, and changing their farmed fish compositions. Results further 
show that 57% of households’ farm were actually affected by those 
climate shocks in the previous fish production cycle. Among the 
decision-making variables, women were most involved in those related 
to the type and quantity of food consumed by the household, followed 
by income allocation from livestock, fish, and crop production. 

3.2. Estimates of technical efficiency of small-scale aquaculture farms 
through radial DEA, non-radial DEA or SBM, and bootstrap DEA in study 
area 

Results of technical efficiency (TE) analysis (radial DEA, non-radial 
DEA and bootstrap DEA techniques) are presented in Fig. 1. The 
average technical efficiency score under the radial DEA analysis was 
0.55, which implies that the fish farming households in this study could 
reduce approximately 45% of their input use without changing their 
output level. However, the magnitude of the non-radial efficiency score 
was at an average level of 0.40, so the feasible input reduction was 60%. 
Theoretically, the average TE derived from the radial model was 15% 
higher than that obtained through non-radial method, which means 
radial TE overestimates the efficiency level because it does not take into 
account the slacks in efficiency estimation and it lacks discriminatory 
power. 

The results of the bootstrap DEA in Fig. 1 reveal that the overall bias- 

corrected technical efficiency (BCTE) score was 0.44, which highlights 
that there is substantial potential for input reduction at 56%. These 
findings reveal that the radial DEA model efficiency scores are over-
estimated if the sample bias is not adjusted. By the confidence interval of 
BCTE scores, it is distinct that the gap between the lower (0.41) and 
upper (0.54) boundary was comparatively small. Moreover, while the 
BCTE scores were within the confidence interval, the radial DEA effi-
ciency scores were not within this interval due to the sample bias (Simar 
and Wilson, 2007). Furthermore, the bias-variance test statistic was far 
above one for all BCTE scores, confirming the accuracy and reliability of 
bootstrap DEA estimates. These particular results show that this effi-
ciency score is statistically reliable and characterizes well the data 
generating process. Therefore, the bootstrap procedure can minimize 
the sample sensitivity. 

As presented in Fig. 1, most of the fish farming households fell within 
the radial technical efficiency scores range of 0.3–0.6 (59%), while 
15.37% of the sampled households registered technical efficiency scores 
between 0.8 and 1. Additionally, 47% of sampled households recorded 
non-radial technical efficiency score range of 0.3–0.6 and only 9.33% of 
sampled households operated with the efficiency score between 0.8 and 
1. Moreover, by the BCTE scores, 69% of fish farming households’ ef-
ficiency score ranged from 0.3 to 0.6, but only 2.6% of sampled 
households’ technical efficiency scores recorded within the range of 
0.8–1. The results highlight that many fish farms in this analysis are 
relatively inefficient, indicating that there is still room to improve fish 
farm technical efficiency even if current input levels and technology are 
maintained. 

Table 2 presents the results of Kolmogorov-Smirnov tests for the 
equality of technical efficiency distributions by major farmed fish spe-
cies and production systems. Among the most common fish species 
groups, there were statistically significant differences at the 5% and 10% 
levels, respectively, between the radial and bias-corrected efficiency 
scores except for rohu and pangasius group.2 There were significant 
differences at 10% and 5% levels, respectively, between the radial and 
non-radial TE scores of sampled households in the Daydaye and Phya-
pon townships. In addition, all TE scores in polyculture (including rohu 
and pangasius) and sediment removal groups were statistically signifi-
cantly at the 5% and 10% levels, respectively. The radial and bias- 
corrected efficiency scores in the integrated farming system groups 
were statistically significant at 10% level, respectively. 

3.3. Slack variable analysis results 

A slack variable refers to the deficit output or excess input used in 
fish production, measured. However, assuming fish farms are operating 
in a similar environment, setting appropriate input targets for lower 
efficiency farms helps the farms to reach or be close to the production 
frontier in comparison with the farms on the frontier. Input targets 
(projected point) refer to “the total amount of inputs adjustment 
required for inefficient DMUs to operate on the production frontier” 
(Tone, 2001). The actual input use is higher than an input target for an 
inefficient firm. Input slacks refer to “the differences between the input 
target and actual input amount” (Ramanathan, 2003). 

Our results show that the estimates for efficiency in fingerling and 
feed inputs were 0.68 and 0.36, respectively, which implies that average 
fingerling and feed use could be reduced by 32% and 64%, respectively, 
and still produce the current level of output. Generally, fish farming 
households assume that the higher the stocking density, the higher the 
output. In reality, overstocking reduces space availability, creating 

Table 1 
Descriptive statistics for variables used in the analysis.  

Variables Mean Std. 
Dev 

Demographic characteristics of households 
Household head gender (man = 1, woman = 0)  0.93  0.27 
Age of household head (years)  52  12.18 
Education level of men household members (years)  7  2.57 
Education level of women household members (years)  7  2.47 
Fish farming experience (years)  3  2.24 
Extension services (access = 1, no access = 0)  0.86  0.35 
Total household expenditure per year (USD)  825.45  947.44 
Aquaculture production characteristics 
Pond size (ha)  0.04  0.06 
Total fish output harvested (t) per farm  0.13  0.17 
Total fingerlings stocked (number) per farm  478.42  306.39 
Total feed use (t) per farm  0.07  0.10 
Total fertilizer use (t) per farm  0.06  0.10 
Total labor use (person-day) per farm  276  103.19 
Other miscellaneous costs (USD) per farm  11.92  15.43 
Integrated fish farming (yes = 1, no = 0)  0.56  0.50 
Polyculture (yes = 1, no = 0)  0.02  0.15 
Household adopted mitigation strategies against climatic 

shocks (yes = 1, no = 0)  
0.75  0.44 

Climatic shocks affected fish farming in previous production 
cycle (yes = 1, no = 0)  

0.57  0.50 

Women’s participation in decision-making activities 
Input use in fish production (%)  0.13  0.30 
Harvested fish use (%)  0.28  0.38 
Land allocation (%)  0.17  0.30 
Type and quantity of food consumed by household (%)  0.72  0.39 
Fish income allocation (%)  0.37  0.36 
Crop income allocation (%)  0.38  0.35 
Livestock income allocation (%)  0.43  0.28 

Note: 1 USD = 1518.43 MMK (July 31,2019). 
Source: Own calculations. 

2 The group in this sentence represents the household group. E.g., rohu group 
includes the households who stocked rohu species in their farms and pangasius 
group includes households who stocked pangasius species in their farm and 
then compare the TE scores of two different household groups (rohu and 
pangasius). 
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stress for fish and eventually leading to a high mortality rate (Iliyasu and 
Mohamed, 2016). Therefore, information on the suitable stocking den-
sity is of paramount importance for the success in fish farming because 
overstocking the fingerlings has adverse effects on fish growth. There are 

two major implications of the overuse of feed input: increased produc-
tion costs, which in turn lower profits, and contamination of the fish 
environment that leads to reduced oxygen levels and higher mortality 
rates (Iliyasu and Mohamed, 2016). As the sampled fish farming 
households are smallholders with an average of only 3 years of aqua-
culture experience, they did not employ recommended stocking den-
sities and feed amounts, which leads to the inefficient use of inputs. 

The potential input reduction for the fertilizer was around 70%. All 
fish farming households applied fertilizer, mostly at the pond prepara-
tion stage. Lime, phosphate, and urea are the most commonly used 
fertilizers for households. Several factors might explain the low fertilizer 
efficiency level. For example, small-scale aquaculture farmers might not 
apply recommended or standard fertilizer rates due to the lack of quality 
and effective extension services. In addition, climate shocks can be the 
other possible reasons for the lower efficiency level of the farms because 
only very few households affected by climate shocks are operating their 
farms at the optimal level. The estimated average labor efficiency score 
was 0.44, which implies that fish farming households can reduce their 
use of labor by approximately 56%. Most of the sampled households 
depend heavily on the family labor use for fish production activities, 
particularly fish feeding, while a few casual workers are occasionally 
hired for pond preparation and harvesting. However, an increase in 
labor use does not necessarily add to the efficiency level of fish farmers. 
Compared to large-scale fish farming, small-scale fish farming tends to 
use more labor due to lack of capital-intensive technologies. Therefore, 
most sampled small-scale farmers require adjustments to achieve labor 
efficiency. Climate shocks can also be the other possible reasons for the 
low labor efficiency level of the studied farms. The slack-based effi-
ciency score in the other input costs was found to be reduced around 
70%. Among these miscellaneous costs, fuel cost and rent for machinery 
account for the largest share of these costs. 

Fig. 1. Frequency distribution of technical efficiency scores in small-scale aquaculture using the radial, slack-based, and bias-corrected methods.  

Table 2 
Kolmogorov-Smirnov test for the equality of distribution between pairs of fish 
species and study area.   

Radial technical 
efficiency 

Non-radial 
technical 
efficiency 

Bias-corrected 
technical 
efficiency 

Test 
value 

P- 
value 

Test 
value 

P- 
value 

Test 
value 

P- 
value 

Fish species* 
F1 & F2  0.07  0.78  0.08  0.54  0.08  0.58 
F1 & F3  0.20  0.06  0.16  0.19  0.22  0.03 
F2 & F3  0.21  0.04  0.12  0.56  0.21  0.04 
Study area** 
A1 & A2  0.14  0.08  0.16  0.03  0.09  0.49 
A1 & A3  0.13  0.60  0.16  0.29  0.14  0.52 
A2 & A3  0.16  0.25  0.12  0.53  0.17  0.18 
Facility type*** 

(P&C)  
0.13  0.56  0.12  0.63  0.14  0.53 

Integrated fish 
farming  

0.13  0.05  0.09  0.26  0.12  0.06 

Polyculture  0.50  0.02  0.47  0.04  0.48  0.03 
Sediment 

removal  
0.16  0.01  0.13  0.07  0.13  0.06 

Notes: The null hypothesis is the equality of distribution. 
*The most common species among the fish farmers in the study area are rohu 
(F1), pangasius (F2), and silver barb (F3). **A1 = Daydaye, A2 = Phyapon, 
A3 = Kyaiklatt, ***P = Pond, C = Chang Myaung. 
Source: Own calculations. 
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3.4. Women’s participation in decision-making processes of small-scale 
fish farming households 

Our results in Appendix A.3 revealthat most of the decision-making 
variables had shown strongly significant and positive correlation, sup-
porting the use of PCA. The null-hypothesis of Bartlett’s test was rejected 
(see Appendix A.2). For the results of PCA to be valid, only factors with 
an eigenvalue greater than 1 were retained in the analysis. The absolute 
factor loadings of all decision variables were higher than 0.4 (see Ap-
pendix A.5), indicating that all are important for the factor, that is, 
participation in decision making. Moreover, as the final validity test, all 
decision variables had a Kaiser-Meyer-Olkin (KMO) value higher than 
0.6, and the overall KMO value was 0.77, which indicates sampling 
adequacy. All validity tests yielded the positive results, indicating that 
the predicted values referring to WPDMI present effectively the infor-
mation included in the decision variables. The WPDMI was a continuous 
index between − 1.45 and 2.83. Fig. 2 presents the histogram of WPDMI. 

3.5. Determinants of technical efficiency 

The estimation results of the bootstrapped truncated regression are 
presented in Table 3. As the dependent variable represents bias- 
corrected technical inefficiency scores, hence, a positive (negative) co-
efficient sign indicates a negative (positive) source of technical 
efficiency. 

Regarding socioeconomic variables of the households, although age, 
age squared, experience of the household head, access to extension 
services, household’s annual total expenditure and average education 
level of household members were expected to impact the technical ef-
ficiency of their farms, we did not find any linkages between these 
variables and technical efficiency in different models. Long et al. (2020a, 
2020b) and Nguyen and Fisher (2014) also reported an insignificant 
relationship between education, experience and access to training var-
iables and technical efficiency in Vietnam. 

The coefficient of household head gender was negative and statisti-
cally significant at the 5% level. This result indicates that man-headed 
households are associated with higher technical efficiency compared 
to woman-headed households. A possible reason could be that following 
the social and cultural norms in the study area, man-headed households 
are more likely to access quality advisory services delivery through 

social networks, formal extension, and alternative channels of infor-
mation than their woman counterparts therefore leading to higher 
productivity and improved technical efficiency for the farm. Similar 
results were reported by Alene et al. (2008), Ragasa et al. (2013), 
Aguilar et al. (2015), Oluwatayo and Adedeji (2019) and Quisumbing 
et al. (2013). However, the insignificant relationship between formal 
extension services and technical efficiency of small-scale fish farming 
can possibly suggests the need for improved quality of aquaculture 
knowledge diffusion. Ragasa et al. (2013) indicated that the frequency 
of extension visits may not matter for improved productivity if the 
quality of advisory services is poor. Perhaps social networks and 

Fig. 2. Histogram of women’s participation in decision-making index.  

Table 3 
Bootstrapped truncated regression analysis.  

Variables Coefficient S.E. 

Demographic characteristics of households    
Age of household head (years)  0.003 0.004 
Age squared of household head (years2)  -0.000 0.000 
Fish farming experience (years)  0.001 0.003 
Extension services (access = 1, no access = 0)  -0.020 0.021 
Education level of men household members (years)  -0.003 0.003 
Education level of women household members (years)  -0.001 0.003 
Log of total household expenditure per year (USD)  -0.005 0.009 
Household head gender (man = 1, woman = 0)  -0.090 0.040** 
Women’s participation in decision-making index  -0.017 0.008** 
Aquaculture production characteristics 
Integrated fish farming (yes = 1, no = 0)  -0.012 0.016 
Polyculture (yes = 1, no = 0)  -0.106 0.052** 
Pond size groups 
Group 2  -0.045 0.017*** 
Group 3  -0.063 0.018*** 
Household adopted mitigation strategies against climatic 

shocks (yes = 1, no = 0)  
-0.041 0.020** 

Climatic shocks affected fish farming in the previous 
production cycle (yes = 1, no = 0)  

0.012 0.020 

_cons  0.629 0.154*** 
Sigma  0.145 0.006*** 
Observations  423 

Notes: P-values less than 0.1, 0.05, and 0.01 correspond to *, **, and ***, 
respectively. S.E. is the bootstrapped standard error. 
*Pond size was split into three groups: group 1 (< < 0.02 ha), group 2 
(0.02–0.04 ha), and group 3 ( >0.04 ha). 
Source: Own calculations. 
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alternative channels of information such as radio or agro dealers could 
allow households to not only have exposure to innovations and best 
management practices but also ensure they acquire the skills required 
for proper implementation of the practices on-farm. 

As expected, WPDM was positively and significantly associated with 
technical efficiency at the 5% level. Women’s participation in decision- 
making process within the household raises their voice within the 
household and increases their access to production resources, which in 
turn positively affects agricultural productivity (Adeyeye et al., 2019). 
The strong bargaining power that results in intensive participation in 
decision-making activities may directly influence the technical effi-
ciency and productivity of fish farming through its effect on the 
household members’ ability to allocate and organize productive re-
sources optimally (Diiro et al., 2018). Such bargaining power reduces 
gender inequality by empowering women with more control over de-
cision, which, in turn affects their lives by enabling them to allocate 
more resources to their preferences (Doss, 2013). In addition, women’s 
participation in decision-making tends to have "spillover" to the farms 
operated by others within the households by sharing the information or 
pooling resources because all household members may have different 
preferences that they would bring to the household decision-making 
processes. Household head gender as the main variable of interest 
does not capture the information on intra-household decision-making. 
Analysis by Seymour (2017) suggests that both man and jointly 
managed plots in Bangladesh have higher technical efficiency when 
empowerment gap is reduced. 

Among the fish farming systems, polyculture has a positive effect on 
technical efficiency and was statistically significant at the 5% level. 
Regarding the environmental aspect, adoption of adaptation strategies 
such as harvesting fish early, upgrading fish ponds, monitoring water 
quality, exchanging pond water and changing their farmed fish 
composition, against climatic shocks, such as flooding, erratic rainfall, 
storms/cyclones and extreme high temperature, has a positive effect on 
technical efficiency at the 5% significance level. Farmers who are aware 
of climate variability are able to make more efficient use of their pro-
ductive resources by applying the adaptation practices based on their 
knowledge and understanding of climate change (Ehiakpor et al., 2016). 
Efficient and moderately efficient farmers are more perceptive of 
climate change, compared to less efficient farmers (Torres et al., 2019). 
As documented by Torres et al. (2019) and Roco et al. (2017) the use of 
climate change adaptation strategies is imperative to sustain and pro-
mote agricultural productivity and technical efficiency. Additionally, 
the sign of the coefficient for pond size is consistent with our expecta-
tions. The results show that pond size has a positive impact on technical 
efficiency that was statistically significant at the 1% level, indicating 
that fish farming in larger ponds is more efficient than farming in smaller 
ponds. Due to the economies of scale, expanding the level of output as 
the pond size increases leads to an increase in input use efficiency with 
lower production costs. 

The findings from this study provide important policy recommen-
dations from different perspectives. To achieve the purpose of increased 
technical efficiency of small-scale aquaculture in Myanmar, the gov-
ernment and other development organizations should promote dissem-
ination and adoption of the best management practices through quality 
and effective extension services and provide incentives to small-scale 
fish farmers for improving the productivity and efficiency of their fish 
farming. Results also suggest the need for improving the quality of 
extension services delivery in order to equip farmers with the skills 
required to implement the practices properly. In addition, cooperation 
with local or international organizations and research institutes should 
be encouraged to develop a proper fish feeding formula with good 
feeding practices that corresponds to the stage of fish growth, culture 
system, and species types to reduce the current inefficient use of feed 
because feed is the major input in fish production and constitutes over 
half of the production costs. Dissemination of information on the suit-
able fish stocking density through quality extension services and the 

quality of fingerlings such as genetically improved farmed tilapia (GIFT) 
or other species and proper size of fingerings are of paramount impor-
tance in improving the technical efficiency. This would help fish farms 
succeed economically and environmentally. Additionally, the policies or 
intervention programs directed to increase productivity and technical 
efficiency of small-scale aquaculture should be implemented together 
with policies designed to encourage women’s empowerment. Finally, 
government and non-government organizations should set up informa-
tion dissemination programs and training schemes in relation to climate 
variability to enhance households’ understanding and knowledge about 
this issue in implementing adaptation practices effectively. 

4. Conclusion 

Our technical efficiency analysis has revealed that small-scale 
aquaculture households under the study were operating below the 
production frontier, indicating possibilities of input reduction for 
improved on-farm aquaculture performance without changing the level 
of their output. Theoretically, the average TE derived from the radial 
model is 15% higher than that obtained through non-radial model, 
which means radial TE overestimates the efficiency level because it does 
not take into account the slacks in efficiency estimation and it lacks 
discriminatory power. The results of the bias-corrected TE scores have 
also revealed that the radial DEA model efficiency scores are over-
estimated if the sample bias is not adjusted. In addition, our results of the 
slack analysis have shown that all the inputs used in fish production 
contain slacks and they could be reduced accordingly. 

We found that participation of women in decision-making within the 
household is associated with increased technical efficiency. To draw 
lessons from this research finding, we concluded that WPDM is one of 
the crucial strategies for more efficient resource utilization that maxi-
mizes output. Regarding socioeconomic factors, our results show that 
man-headed households have higher technical efficiency than woman- 
headed households due to social and cultural norms that favor the 
participation of the former in social networks. From the evidence pre-
sented in this study, as scale of economies exists in Myanmar’s small- 
scale aquaculture sector, small-scale fish farming households could 
gain higher productivity with more efficient input utilization by 
increasing their pond size. In addition, different fish farming systems, 
such as polyculture and adaptation strategies against climatic shocks are 
another considerable scope of improvement in this sector. 

This study has suffered two limitations. First, we were unable to 
measure the women’s empowerment score and Gender Parity Index 
(GPI) by using comprehensive measurement of women’s empowerment 
such as WEAI and WELI due to the lack of information on the indicators 
of these techniques. To measure women’s empowerment using these 
methods, a constructed questionnaire would have to be used for the 
domains of empowerment and to ask the respondents of both genders 
particularly main man and woman decision-makers separately. There-
fore, future women’s empowerment studies could consider using both 
WEAI and WPDMI methods to analyze the differences and comple-
mentarities between these two indicators of empowerment in aquacul-
ture. Second, the study generates important insights about the 
correlation between WPDM and TE in aquaculture, but unobserved 
heterogeneity prevalent in non-experimental studies such as ours means 
we cannot infer causality. 
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Appendices. 

Appendix A.1 

Step (1): Estimate the technical efficiency (θj) for all small-scale fish farms in the sample data set j = 1, ……, n using Eq. (1). 
Step (2) Use the method of maximum likelihood to obtain coefficient estimates β̂ and an estimate for variance parameter σ̂ in the truncated 

regression of θj on Zj when θj > 1. 

Step (3): For each j = 1….,n, repeat the following four steps (3.1–3.4) B1 = 2000 times to yield a set of bootstrap estimates ̂θ
b
j , with b = 1, ……,B1. 

3.1 For each j = 1, ….,n, an artificial error term ε̂j is drawn from the truncated N(0, σ̂ ) distribution with the left truncation at 1-Zj β̂ 
3.2 For each j = 1, ….,n, compute the artificial efficiency scores θ̂ j = Zj β̂ + ε̂j . 

3.3 Constructing an artificial data set with input quantities
(

X̂j = θj/θ̂ j

)
Xj and output quantities (Ŷj = Yj). 

3.4 Using the artificial data set generated in step 3.3.and Eq. (1), as reference set in a DEA that yields the artificial efficiency score estimates θ̂
b
j for 

each original DMU j = 1,……,n. 

Step (4): For each j = 1, …….n, calculate a bias corrected efficiency score θ̂
bc
j as θ̂ j −

(

1
B1

∑B1
b=1 θ̂

b
j − θ̂ j

)

. 

Step (5): Run a truncated regression of ̂θ
bc
j on Zj to obtain coefficient estimates ̂̂β and an estimate for variance parameter ̂̂σ by maximum likelihood. 

Step (6): Repeat the following steps 6.1–6.3 with B2 = 2000 times in order to obtain a set of bootstrap estimates (̂̂β
b
, ̂̂σ

b
), with b = 1,……., B2. 

6.1 For each j = 1, ….,n, artificial error ̂̂ε j is drawn from the truncated N(0, ̂̂σ ) distribution with left-truncation at 1-Zj
̂̂β 

6.2 For each j = 1, ….,n, compute the artificial efficiency scores ̂̂θ j = Zj
̂̂β + ̂̂ε j. 

6.3. Run a truncated regression of ̂̂θ j on Zj to obtain bootstrap estimates ̂̂β
b
and ̂̂σ

b
, by maximum likelihood. 

Step (7): Use bootstrap estimates ̂̂β
b 

and ̂̂σ
b 

and the estimates ̂̂β and ̂̂σ generated in Step (5) to construct the confidence intervals and standard 

errors for β and σε. The (1- α) percent confidence interval of the jth element of vector β is constructed as the Pr

⎛

⎝ − bα
2
≤
̂̂β

b
−
̂̂β ≤ − aα/2

⎞

⎠ ≈ 1 − α such 

that the estimated confident interval for βj is 
[
̂̂β +a∗

α/2,
̂̂β +b∗α/2

]

. 

Results of the principal component analysis. 

Appendix A.2 Bartlett test of sphericity  

factortest DM_inputuse DM_harvestuse DM_nutrition DM_landallocation DM_fishincome DM_cropincome DM_livestockincome 
Determinant of the correlation matrix Det = 0.064 
Bartlett test of sphericity Chi-square = 1149.247 

Degrees of freedom = 21 
p-value = 0.000 
H0: variables are not intercorrelated 

Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy KMO = 0.77 

Note: DM = Decision-making. 
Source: Own calculations. 

Appendix A.3 Correlation of decision variables 
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DM_inputuse DM_harvestuse DM_nutrition DM_land allocation DM_fish income DM_crop income DM_livestock income 

DM_inputuse 1        
DM_harvestuse 0.527*** 1       
DM_nutrition 0.129*** 0.305*** 1      
DM_landallocation 0.489*** 0.381*** 0.194*** 1     
DM_fishincome 0.298*** 0.576*** 0.313*** 0.217*** 1    
DM_cropincome 0.288*** 0.537*** 0.304*** 0.389*** 0.776*** 1   
DM_livestockincome 0.214*** 0.395*** 0.276*** 0.296*** 0.526*** 0.607***  1 

Note: P-values less than 0.1, 0.05, and 0.01 correspond to *, **, and ***, respectively. 
Source: Own calculations. 

Appendix A.4 Factor analysis of decision variables  

Factor Eigenvalue Proportion 

Factor1  3.385  0.484 
Factor2  1.121  0.160 
Factor3  0.820  0.117 
Factor4  0.665  0.095 
Factor5  0.461  0.066 
Factor6  0.362  0.052 
Factor7  0.186  0.027 

Source: Own calculations. 

Appendix A.5 Factor loadings and KMO results of the decision variables  

Variable Factor loading KMO 

DM_inputuse 0.585  0.704 
DM_hrvestuse 0.785  0.834 
DM_nutrition 0.475  0.899 
DM_landallocation 0.583  0.690 
DM_fishincome 0.808  0.725 
DM_cropincome 0.845  0.729 
DM_livestockincome 0.703  0.892 
Extraction method: Principal Component Analysis (PCA)  
Overall KMO: 0.77 

Source: Own calculations. 
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