

Aquaculture growth and future challenges

- Currently, aquaculture is one of the fastest growing food producing sector in the world.
- Global demand for aquatic foods will roughly **double by 2050** aquaculture is predicted to meet most of this demand **complementing capture fisheries**.
- With the intensification, the incidence of fish diseases has also increased, which hinder the development and sustainability of aquaculture industry.

Public health' questions with aquatic foods

Inspire Challenge project

Hosts & pathogens from around the world

Tilapia

Oreochromis sp.

Streptococcus sp; Edwardsiella sp.; Aeromonas sp; Vibrio sp.; Infectious Spleen and Kidney Necrosis Virus (ISKNV); Tilapia lake virus (TiLV)

Barramundi

Lates calcarifer

Vibrio sp; Streptococcus iniae

Kingfish

Seriola lalandi

Photobacterium damselae

Qld giant grouper

Epinephelus lanceolatus

Streptococcus agalactiae

Pangasius Pangasius sp.

Aeromonas hydrophila

Rainbow trout

Oncorhynchus mykiss

S. iniae; Yersinia ruckeri

Atlantic salmon

Salmo salar

Y. ruckeri; Tenacibaculum maritimum

Shrimps

Penaeus monodon/vannamei

Vibrio sp; Aeromonas sp.

Origins of the pathogens

Aquaculture pathogens sequenced in this project

Honduras, Ecuador, Peru, USA, Canada, Israel, Australia, New-Zealand, Vietnam, Thailand, Malaysia

Future works using Nanopore

Bangladesh, Egypt, Ghana, Nigeria and Kenya

Disease outbreak: samples collection

Sampling from diseased fish

DNA extraction - cells lysis methods

	Advantages	Disadvantages
SDS + Proteinase K	Overall good performer for DNA extraction	May lead to co-precipitation of carbohydrate
СТАВ	Sample with high polysaccharide (e.g. capsulated/mucoid microbe)	CTAB is detrimental to environmental
Lysozyme pretreatment +SDS	Suitable for gram positive microbe	May not work across all gram positive microbe
Mechanical disruption (Bead beating)	Samples with tough/thick cell wall	Can lead to fragmentation of DNA (higher smearing)

DNA purification methods

	Advantages	Disadvantages
Phase separation (chloroform extraction)	High DNA yield and integrity Cheap	Requires equipment, generates toxic chemicals (chloroform and phenol), relatively time consuming
Column-based separation	Fast and convenient.	Requires equipment, expensive, often low-yield and molecular weight and require multiple centrifuge steps. Not scalable
Magnetic silica/ carboxylated beads	Scalable, fast and convenient, only magnet needed, high DNA yield and integrity	High cost of commercially produced beads

DNA concentration & quality control

Qubit Fluorometer.

Measure the concentration of dsDNA based on the fluorescence emitted by proprietary dsDNA-specific binding dye.

Nanodrop spectrophotometer to estimate DNA purity based on absorbance measurement.

DNA integrity assessed by agarose gel electrophoresis.

© Copyright 2017 Oxford Nanopore Technologies

DNA library prep for Nanopore sequencing

DNA samples for Nanopore sequencing


```
-I. --in2
                                      read2 input file name (string [=])
-0, --out2
                                      read2 output file name (string [=])
    --unpaired1
                                      for PE input, if read1 passed OC but read2 not, it will be written to unpaired1. Default is to discard it
tring [=])
    --unpaired2
                                      for PE input, if read2 passed QC but read1 not, it will be written to unpaired2. If --unpaired2 is same of
umpaired1 (default mode), both unpaired reads will be written to this same file. (string [=])
    --failed_out
                                      specify the file to store reads that cannot pass the filters. (string [=])
                                      for paired-end input, merge each pair of reads into a single read if they are overlapped. The merged read
-m, --merge
ll be written to the file given by --merged_out, the unmerged reads will be written to the files specified by --out1 and --out2. The merging mo
s disabled by default.
    --merged_out
                                      in the merging mode, specify the file name to store merged output, or specify --stdout to stream the merge
utput (string [=])
                                      in the merging mode, write the unmerged or unpaired reads to the file specified by --merge. Disabled by a
    --include_unmerged
-6, --phred64
                                      indicate the input is using phred64 scoring (it'll be converted to phred33, so the output will still be r
                                      compression level for gzip output (1 \sim 9). 1 is fastest, 9 is smallest, default is 4. (int [=4])
-z, --compression
                                     input from STDIN. If the STDIN is interleaved paired-end FASTQ, please also add --interleaved_in.
    --stdin
    --stdout
                                      stream passing-filters reads to STDOUT. This option will result in interleaved FASTQ output for paired-er
```

Bioinformatics: Simplifying Big Data

read1 input file name (string [=])
read1 output file name (string [=])

ptions: -i, --in1

-o, --out1

Linux command line

```
-- threads [N] Use this many BLAST+ threads [1].
               Format all the BLAST databases.
               List included databases.
  --datadir [X] Databases folder [/home/gan/miniconda3/envs/abricate/db]
               Database to use [ncbi].
  --db [X]
               Suppress column header row.
  --noheader
               Output CSV instead of TSV.
               Strip filename paths from FILE column.
  --nopath
  --minid [n.n] Minimum DNA %identity [75].
  --mincov [n.n] Minimum DNA %coverage [0].
               Summarize multiple reports into a table.
DOCUMENTATION
 https://github.com/tseemann/abricate
(abricate) gan@Gan:/mnt/c/Ubuntu_Shared/Jerome_WorkShop/keep/Presentation Rename/Vpara$ abricate *.contigs.fasta
Using nucl database ncbi: 5283 sequences - 2020-Feb-20
                    START END STRAND GENE COVERAGE
#FILE SEQUENCE
                                                               COVERAGE MAP GAPS %COVERAGE
                                                                                                   %IDENTITY
                     PRODUCT RESISTANCE
ATABASE ACCESSION
Processing: NF_1.contigs.fasta
Found 3 genes in NF 1.contigs.fasta
NF 1.contigs.fasta NODE 11 length 192793 cov 91.644690 64786 65250 -
                                                                             tet(34) 1-465/465
                                                                                                   -----/-----
/2 99.78 83.48 ncbi NG_048129.1 oxytetracycline resistance phosphoribosyltransferase domain-containing protein Tet(34)
ETRACYCLINE
                                                                             blaCARB-47 1-852/852 =========
NF 1.contigs.fasta NODE 1 length 601117 cov 80.593360 329283 330134 -
    100.00 99.18 ncbi NG_050564.1 carbenicillin-hydrolyzing class A beta-lactamase CARB-47
NF 1.contigs.fasta NODE_4_length_470469_cov_78.618048 189617 191218 + tet(35) 1-1602/1602
/0 100.00 99.19 ncbi NG 063830.1 tetracycline efflux Na+/H+ antiporter family transporter Tet(35) TETRACYCLINE
Processing: UMP_1.contigs.fasta
Found 3 genes in UMP_1.contigs.fasta
UMP 1.contigs.fasta NODE 1 length 862548 cov 114.102298 519864 520715 +
                                                                              blaCARB-33 1-852/852 =========
   100.00 99.53 ncbi NG_048737.1 carbenicillin-hydrolyzing class A beta-lactamase CARB-33
UMP 1.contigs.fasta NODE 4 length 471855 cov 114.677020 280941 282542 -
                                                                              tet(35) 1-1602/1602
   100.00 98.94 ncbi NG 063830.1 tetracycline efflux Na+/H+ antiporter family transporter Tet(35) TETRACYCLINE
UMP 1.contigs.fasta NODE 9 length 179391 cov 118.384114 64784 65248 -
                                                                             tet(34) 1-465/465
                                                                                                   ---------
      99.78 83.26 ncbi NG_048129.1 oxytetracycline resistance phosphoribosyltransferase domain-containing protein Tet(34)
ETRACYCLINE
Processing: UMP_3.contigs.fasta
Found 3 genes in UMP_3.contigs.fasta
UMP_3.contigs.fasta NODE_1_length_876017_cov_54.348261
                                                        685103 686704 -
                                                                              tet(35) 1-1602/1602
      100.00 98.94 ncbi NG_063830.1 tetracycline efflux Na+/H+ antiporter family transporter Tet(35) TETRACYCLINE
UMP_3.contigs.fasta NODE_2_length_862548_cov_54.500130 341834 342685 -
                                                                              blaCARB-33 1-852/852 =========
/0 100.00 99.53 ncbi NG 048737.1 carbenicillin-hydrolyzing class A beta-lactamase CARB-33
                                                                                                   BETA-LACTAM
UMP_3.contigs.fasta NODE_9_length_179145_cov_60.183578 64784 65248 - tet(34) 1-465/465
/2 99.78 83.26 ncbi NG 048129.1 oxytetracycline resistance phosphoribosyltransferase domain-containing protein Tet(34)
ETRACYCLINE
Processing: UPM_1.contigs.fasta
```

Web-based tools

- Upload Fasta (or FastQ) files
- Open-source = Free to use
- Peer-reviewed
- Doesn't rely on your hardware
- Internet Connection (cloud)

Molecular serotyping on selected strains (GBS)

BLAST-based approach (input = Fasta: assembled draft or complete genome)

Name Serotype
NF_3 GBS-SBG:III-4
Name Serotype
UPM_3 GBS-SBG:III-4

https://github.com/swainechen/GBS-SBG

SAME RESULTS

Diagnostic k-mer-based approach (input = Fastq > 400 read sequences - Assembly-Free and Real-Time)

In development by WorldFish, UQ and Wilderlab

Browse... | 1000.fastq | Upload of ASTQ file | Identify pathogen |

{"data_filename":["1000.fastq"], "data_content_type":["application/octet-stream"], "matches":

"sa_sero":{"III":[5880], "Ib":[1071], "V":[781], "II":[572], "VI": [506], "Ia":[496], "IV":[95]}

Fish farmers' questions during disease outbreak

How can I prevent disease in the next crop?

Genome-based diagnosis of pathogens in aquaculture

Latest publication

> J Fish Dis. 2021 Oct;44(10):1491-1502. doi: 10.1111/jfd.13467. Epub 2021 Jun 8.

Rapid genotyping of tilapia lake virus (TiLV) using Nanopore sequencing

```
Jerome Delamare-Deboutteville <sup>1</sup>, Suwimon Taengphu <sup>2</sup>, Han Ming Gan <sup>3</sup>,

Pattanapon Kayansamruaj <sup>4</sup>, Partho Pratim Debnath <sup>5</sup>, Andrew Barnes <sup>6</sup>, Shaun Wilkinson <sup>7</sup> <sup>8</sup>,

Minami Kawasaki <sup>6</sup>, Chadag Vishnumurthy Mohan <sup>1</sup>, Saengchan Senapin <sup>2</sup> <sup>9</sup>, Ha Thanh Dong <sup>10</sup>
```

Affiliations + expand

PMID: 34101853 DOI: 10.1111/jfd.13467

Thank You

This work was undertaken as part of

In partnership with

