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DNA Extraction

Bacterial resuspension was spinned down followed by the removal of supernatant (ethanol) via decantation.
DNA extraction was performed as per the method of Sokolov et al (Sokolov 2000) with some modifications. The
pellet was resuspended in 500 µL of lysis buffer (50 mM NaCl, 50 mM Tris-HCl pH8, 50 mM EDTA, 2% SDS) and
incubated at 60°C for 30 minutes. Then, 3 µL RNAse A (10 mg/mL) was added to the lysate followed by
incubation at room temperature for 10 minutes. Salting out was performed via the addition of 50 µL (0.1x vol)
saturated KCl at 4°C for 5 minutes. The lysate was subsequently extracted once with equal volume of
chloroform to remove remaining proteins. The aqueous layer containing the DNA was mixed with an equal
volume of isopropanol and 20 µL of SPRI bead to promote binding of DNA onto the solid carboxylated layer
(Oberacker et al. 2019). After incubation at room temperature for 10 minutes, the mixture was placed on a
magnetic rack for 2 minutes followed by the removal of supernatant. The bound magnetic bead was washed
twice with 75% ethanol. DNA elution from the bead was performed by the resuspension of the bead with 100
µL of TE buffer followed by incubation at 50°C for 5 minutes. 

Illumina library preparation and genome sequencing

Approximately 100 ng of DNA as measured by Qubit was fragmented to 350 bp using a Bioruptor followed by
NEB Ultra II library preparation kit for Illumina according to the manufacturer’s instructions (NEB, Ipswich, MA).
Sequencing was performed on a NovaSEQ6000 (Illumina, San Diego, CA) generating approximately 1 gb of
paired-end data (2x150 bp) for each sample.

Nanopore library preparation and genome sequencing

Approximately 400 ng of DNA as measured by Qubit was fragmented with the Nanopore rapid barcoding kit
according to the manufacturer’s instructions (Oxford Nanopore, UK). The samples were pooled and sequenced
on a Nanopore Flonge flow cell. Basecalling of the fast5 file used Guppy v4.4.1 (high accuracy mode). 

De novo assembly - Illumina

Raw Illumina paired-end reads were trimmed with fastp v0.21 (S. Chen et al. 2018) to remove low-quality bases
and Illumina adapter sequences. The trimmed reads were subsequently used for de novo assembly in SPAdes
v3.15.0 (--isolate setting) (Bankevich et al. 2012). Contigs smaller than 500 bp representing mostly sequencing
artefact were removed and the filtered assembly was used for subsequent analysis. 

Hybrid De novo assembly - Nanopore and Illumina

Raw nanopore reads were quality- and length-filtered to retain reads longer than 2,000 bp with qscore of 7 or
higher. The filtered Nanopore were subsequently used in combination with the Illumina reads for hybrid
assembly using Unicycler (default setting) (Wick et al. 2017). Contigs smaller than 500 bp representing mostly
sequencing artefact were removed and the filtered assembly was used for subsequent analysis.
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Assessment of Genome Assembly

Genome assembly statistics were generated using QUAST (Gurevich et al. 2013). Assessment of the genome
completeness used BUSCO5 (Simão et al. 2015) that identified conserved microbial single copy genes as listed
in the bacteria_odb10 database. 

Taxonomic classification

Ribosomal RNA-containing contigs were identified and its corresponding rRNA genes (5S, 16S and 23S rRNA)
were extracted using barrnap into a single fasta file that can be traditionally used to BLAST against the NCBI
microbial 16S database. In addition, a more advanced and likely more accurate genome-based classification
was also performed using kmerfinder v3 which assigns species-level classification based on a combination of
unique DNA signatures (kmers) in the assembly (Hasman et al. 2014). 

In-silico MLST, identification of AMR genes and virulence factors

Subject to the availability of the species in the database, an in-silico MLST was performed on the assembled
genome using the open-source mlst tool that will perform nucleotide similarity search against the pubmlst
database (Jolley, Bray, and Maiden 2018). Abricate was employed to perform a BLAST-based nucleotide
similarity search of the assembled genome against the curated NCBI AMR (Feldgarden et al. 2021) and
virulence factor database (L. Chen et al. 2005). Gene region exhibiting more than 90% identity to the database
were included in the report. 

Data description

Within the report folder. The most important data will be the raw sequencing data. They have the .fastq.gz
extension. For Nanopore, it will have the .nanopore.fastq.gz extension and Illumina data being paired-end will
consist of two files with the .R1.fastq.gz and .R2.fastq.gz extension. Genome assembly is in the *.fasta format.
Illumina-only assembly was performed with SPADES and hence it has the .spades.fasta extension. Hybrid
assembly done with unicycler will have the .unicycler.fasta extension. Additional extensions behind other files
are self-explanatory. For example, the *.quast file will be the output of QUAST analysis. 
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Folder structure of zip file

SAMPLE.report/
├── SAMPLE.Illumina_SequencingStats.txt
├── SAMPLE.nanopore.fastq.gz
├── SAMPLE.nanopore.sequencingstat.txt
├── SAMPLE.R1.fastq.gz
├── SAMPLE.R2.fastq.gz
├── SAMPLE.spades.busco.txt
├── SAMPLE.spades.fasta
├── SAMPLE.spades.quast
│   ├── basic_stats
│   │   ├── coverage_histogram.pdf
│   │   ├── cumulative_plot.pdf
│   │   ├── GC_content_plot.pdf
│   │   ├── Nx_plot.pdf
│   │   ├── SAMPLE-spades_coverage_histogram.pdf
│   │   └── SAMPLE.spades_GC_content_plot.pdf
│   ├── icarus.html
│   ├── icarus_viewers
│   │   └── contig_size_viewer.html
│   ├── quast.log
│   ├── report.html
│   ├── report.pdf
│   ├── report.tex
│   ├── report.tsv
│   ├── report.txt
│   ├── transposed_report.tex
│   ├── transposed_report.tsv
│   └── transposed_report.txt
├── SAMPLE.spades.resfinder.txt
├── SAMPLE.spades.rRNAseq.fna
├── SAMPLE.spades.virulencefactor.txt
├── SAMPLE.species_assign.txt
├── SAMPLE.unicycler.busco.txt
├── SAMPLE.unicycler.fasta
├── SAMPLE.unicycler.quast
│   ├── basic_stats
│   │   ├── cumulative_plot.pdf
│   │   ├── GC_content_plot.pdf
│   │   ├── Nx_plot.pdf
│   │   └── SAMPLE.unicycler_GC_content_plot.pdf
│   ├── icarus.html
│   ├── icarus_viewers
│   │   └── contig_size_viewer.html
│   ├── quast.log
│   ├── report.html
│   ├── report.pdf
│   ├── report.tex
│   ├── report.tsv
│   ├── report.txt
│   ├── transposed_report.tex
│   ├── transposed_report.tsv
│   └── transposed_report.txt
├── SAMPLE.unicycler.resfinder.txt
├── SAMPLE.unicycler.rRNAseq.fna
└── SAMPLE.unicycler.virulencefactor.txt
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