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Abstract

Tilapia is an affordable protein source farmed in over 140 countries with the majority

of production in low- and middle-income countries. Intensification of tilapia farming

has exacerbated losses caused by emerging and re-emerging infectious diseases.

Disease diagnostics play a crucial role in biosecurity and health management to

mitigate disease loss and improve animal welfare in aquaculture. Three continuous

levels of diagnostics (I, II and III) for aquatic species have been proposed by Food and

Agriculture Organization of the United Nations (FAO) and the Network of Aquacul-

ture Centers in Asia and the Pacific (NACA) to promote the integration of basic and

advanced methods to achieve accurate and meaningful interpretation of diagnostic

results. However, the recent proliferation of cutting-edge molecular methods applied
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in the diagnosis of diseases of aquacultured animals has shifted the focus of

researchers and users away from basic approaches and toward molecular diagnostics,

despite the fact that many diseases can be rapidly diagnosed using inexpensive,

simple microscopic examination and that most emerging diseases in aquaculture were

discovered by histopathology. This review, therefore, revisits and highlights the impor-

tance of the three levels of diagnostics for diseases of tilapia, particularly the frequently

overlooked basic procedures (e.g., case history records, gross pathology, presumptive

diagnostic methods and histopathology). The review also covers current and emerging

molecular diagnostic technologies for tilapia pathogens including polymerase chain

reaction methods (conventional, quantitative, digital), isothermal amplification methods

Loop-mediated Isothermal Amplification (LAMP), recombinase polymerase amplifica-

tion (RPA), clustered regularly interspaced short palindromic repeats (CRISPR)-based

detection, lateral flow immunoassays, as well as discussing what is on the horizon for

tilapia disease diagnostics (next generation sequencing, artificial intelligence, environ-

mental Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) and point-of-care

testing) providing a future vision for transferring these technologies to farmers and

stakeholders for a sustainable aquatic food system transformation.
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1 | OVERVIEW OF TILAPIA
AQUACULTURE, DISEASES AND
IMPORTANCE OF DIAGNOSTICS

Aquatic foods, both farmed and caught, distributed through various

supply chains, have significantly contributed to the improvement and

diversification of diets, as well as the promotion of nutritional

well-being for many people.1 Recognition of the critical role of aquatic

foods in nourishing nations and transforming food systems is increas-

ing with the recent tabling of a discussion paper by the United

Nations (UN) on the role of aquatic foods for nutrition gaining global

attention.2 In addition to underpinning local nutritional needs and

livelihoods for tens of millions of people, aquatic commodities are

some of the most traded food products in the world. The value of

global fish exports increased from USD 7.8 billion in 1976 to USD

164 billion in 2018.3 Producing aquatic foods that are safe, healthy,

accessible and affordable is the need of the hour to meet the nutri-

tional needs of millions of people. This is where the farming of carps,

tilapias and catfish assumes significance and presently supply 35.84%

of world aquaculture production with a value of 83 billion dollars.3,4

Tilapia, by virtue of their overall resilience, have been species of

choice for farming in a diverse range of farming systems, from simple

backyard/homestead ponds to highly intensive raceways. Today, tilapia

is the second most commercially important finfish group after carps,

farmed in over 140 countries.3,5–7 In 2018, global tilapia production by

volume was estimated at 6.5 million metric tonnes (MMT) with the top

four producers being China (1.78 MMT), Indonesia (1.11 MMT), Egypt

(0.88 MMT) and Bangladesh (0.32 MMT).3 The global tilapia industry

and its associated value chains are currently estimated to be worth

about US$ 7.9 billion.8,9 Access to genetically improved elite strains of

Nile tilapia (Oreochromis niloticus) is further fuelling the growth of the

tilapia industry across the globe. Members of the genus Oreochromis

are important not only for providing food and employment for local

people, including women and youth, but also for earnings from

domestic market and international export.10–12 Today, Nile tilapia has

become the third-most produced fish of all finfish species, representing

a major source of affordable protein nutrients for multitude of

consumers in many low- and middle-income countries (LMICs) across

Asia, Africa, America and the Pacific.

Infectious diseases remain a serious bottleneck for aquaculture

development, particularly in Asia where over 89% of the global

production takes place.3 Globally, disease-related losses in the

aquaculture sector were estimated to exceed USD 6 billion in

2017.13,14 Finfish aquaculture alone suffered annual losses ranging

from USD 1.05 to USD 9.58 billion per year.15,16 For many years, tila-

pia was perceived as hardy and disease resistant but this has changed

in the face of intensification, climate change and global trade of live

aquatic species, where global tilapia farming is now affected by

serious disease problems caused by parasites (e.g., protozoan, mono-

genean), bacteria (e.g., Streptococcus spp., Aeromonas spp., Edwardsiella

spp., Flavobacterium columnare, Francisella orientalis) and viruses

(e.g., tilapia lake virus [TiLV], infectious spleen and kidney necrosis

virus [ISKNV], tilapia parvovirus [TiPV] and nervous necrosis virus

[NNV]) that are impacting the performance of the industry globally.

The true economic cost of diseases in the tilapia industry is hard to

estimate, but based on selected case studies15,17–19 disease-related

losses could run up to several billion dollars annually. For example, the

value of 300,000 tonnes of tilapia lost due to disease caused by
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Streptococcus spp. infections was estimated at USD 500 million.20

Disease is also seen as a primary driver for increased use (misuse) of

antimicrobials contributing to antimicrobial resistance (AMR) problems

in aquatic food systems.21–25

Global outbreaks of Streptococcosis and recent outbreaks caused

by TiLV and ISKNV in farmed and wild tilapia have drawn the atten-

tion of aquatic health specialists and policy makers worldwide to call

for more research and better understanding of diseases and their

management in tilapia aquaculture. Adoption of disease management

practices such as routine diagnostics and biosecurity measures with

other disease prevention approaches are going to be central to ensure

sustainability of tilapia farming. Compared with high value salmonids

and shrimp, the global research and development investment toward

disease diagnostics and health management in low value but afford-

able species like tilapia, carps and catfish is less. As a result, adoption

of effective health management and biosecurity practices relatively

weak in LMIC undertaking farming of low value species.

Diagnostics may be defined as the determination of the cause or

nature of a disease through the examination of signs, symptoms and

diagnostic tests.26 Diagnostic tests include both straightforward,

pond-side methods and more advanced laboratory-based techniques

requiring a high level of expertise and infrastructure. Disease

diagnostics play three essential roles in aquaculture health

management and disease control.27,28 Firstly, diagnostics for screen-

ing healthy animals to ensure that they are not inapparent carriers of

pathogens is aimed at disease prevention and is typically used to

identify populations that have tested negative for specific pathogens

as required for domestic or international translocation. This helps to

limit the risk of disease transmission from farm to farm at national and

international levels. Diagnostics play a crucial role in avoiding the

transboundary transmission of a significant number of pathogens

between countries and continents. Secondly, diagnostics have been

used for routine health monitoring of farmed animals in order to

detect infection/illness at an early stage. This facilitates timely

intervention on the host–pathogen–environment complex to avoid a

scenario of disease outbreak and substantial economic losses.

Thirdly, diagnostics are used to diagnose diseases in animals that

have clinical signs of illness. In this scenario, determining the

cause(s) quickly and accurately is crucial for implementing

appropriate management actions (e.g., treatment decisions,

emergency harvest, etc.) to limit the negative impact on aquaculture

farms in the short- and long-term. Diagnostics is particularly

important in national disease monitoring programs, which provide

the scientific foundation for development of national policies,

emergency responses, risk management and biosecurity

measures.28–30 Such policies protects the sector from disease risks

underpin international trade agreements in biological commodities.

The Snieszko circle,26,31 also known as the epidemiological

triad,32,33 shows the relationship between the host, the pathogen and

the environment in disease development (Figure 1a). However, in the

triad, anthropogenic factors are incorporated into the environment circle

of the Venn diagram which underplays their importance in the onset

and outcomes of infectious disease, particularly in modern aquaculture.

In 2013, Shields updated the triad to an epidemiological tetrad to reflect

the significant anthropogenic drivers behind outbreaks of lobster dis-

eases in Long Island Sound, The United States.34 These included exten-

sive eutrophication leading to hypoxia, exposure to metals and

pesticides and various fisheries induced stressors.34 Here we adapt the

tetrad to reflect farmed rather than wild animal disease investigation,

although there is substantial overlap (Figure 1b). There are many human

impacts on farm animal health. These include actions of the farmer such

as water management, animal handling, stocking practice, feed storage

and feeding regimes.35,36 There are directly connected actors such as

feed companies, where diet provided to farms may not be optimally

F IGURE 1 (a) The epidemiological triad31 and (b) the epidemiological tetrad modified from Shields (2013).34 The tetrad is based upon the
original triad of Sniezsko,31 but is modified to separate anthropogenic drivers of disease outbreaks from those that are purely environmental. This
is an important consideration for disease investigation in fish farms where multiple stakeholders may have direct and indirect influence on farming
conditions and consequently animal health. It highlights the importance of a broad based framework for diagnostic investigation and subsequent
mitigation of disease. (Image A by M.G. Bondad-Reantaso and Paulo Padre, image B by A. C. Barnes and J. Delamare-Deboutteville.)
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formulated leading to immune compromise.36 Finally, agriculture and

urban water that are indirectly connected through shared water

resource that may adversely impact the water available to the farm in

terms of quantity (leading to inadequate water exchange and resulting

hypoxia) and quality. Indeed, many pesticides and other pollutants are

known to suppress the immune systems of aquatic organisms leading to

disease.34,37 The importance of the tetrad to disease diagnosis lies in

the emphasis of a broad based investigation to establish cause and

effect. The outcome of diagnosis, ultimately, is establishment of cause

for effective treatment and prevention.

Diagnostics is an important element of a national strategy on

aquatic animal health38,39 (now called national aquatic organism

health strategy) (Figure 2) and supports the other elements such as for

example, policy, legislation and enforcement, risk analysis, pathogen list,

border inspection, health certification, quarantine, farm-level biosecurity

and health management, use of veterinary drugs, disease surveillance,

emergency preparedness and contingency planning and others.

Availability of accurate diagnostic tools is an important criterion

for listing of diseases in the OIE (currently known as the World

Organisation for Animal Health, WOAH) Aquatic Animal Health

Code.40 Article 1.2.1 of the WOAH Aquatic Animal Health Code lists

four criteria for listing an aquatic animal disease. These are:

(i) significant production losses, negative affect on wild populations,

zoonotic; (ii) infectious aetiology proven, strong association;

(iii) capacity for international spread and (iv) diagnostic methods exist.

Diagnostic testing is an essential part (checklist no. 6) of a 12-point

surveillance checklist for surveillance of diseases of aquatic organisms.28

The choice of diagnostic technique needs to account for the following:

• analytical sensitivity which refers to the limit of detection for a

disease agent

• analytical specificity which refers to the ability to distinguish the

targeted disease agent from another

• diagnostic sensitivity which refers to the probability of test to

correctly identify diseased individuals

• diagnostic specificity which refers to the probability of test to

correctly identify non-diseased individuals

Quality assurance of a diagnostic system is also an essential part

(checklist no. 11) of the surveillance checklist. Diagnostic laboratories

that support surveillance could be any accredited laboratory

recognized by the competent authority as having the appropriate

technical competence in disease diagnostic work. Thus, proficiency

ring tests, accreditation and analytical methods are all essential com-

ponents of an overall quality assurance system.28 ISO 17025 is the

accepted international standard by which laboratories are accredited

as being technically competent for specific diagnostic analyses.

Due to their significant benefits in terms of short turnaround time,

high specificity and sensitivity, molecular diagnostic methods (e.g., poly-

merase chain reaction [PCR], quantitative real-time PCR [qPCR], digital

droplet PCR [dPCR], loop-mediated isothermal amplification [LAMP],

recombinase polymerase amplification [RPA] and others) have emerged

as important technologies for improving disease diagnosis in aquacul-

ture. Disease diagnosis in aquaculture was mainly reliant on clinical

observation, rapid microscopic inspection by wet-mount and/or quick

staining of smears or imprinted tissue, histopathology and culturing of

infectious agents prior to the expansion and adoption of molecular

F IGURE 2 Important elements or components of a national aquatic organism health strategy where each element is not a stand-alone
component but rather supports each other. (Image by M.G. Bondad-Reantaso and Paulo Padre)
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methods in the early 2000s.41,42 Importantly, many infectious diseases

in fish and shrimp are initially discovered and diagnosed based on Level I

(see Section 2, below) gross clinical observations and traditional histopa-

thology (Level II). For example, disease caused by TiLV was detected and

defined for the first time as syncytial hepatitis of tilapia (SHT) based on a

pathognomonic lesion identified in the liver of sick tilapia using classical

histology.43 Similarly, an unknown viral disease, scale drop syndrome, in

Asian sea bass was discovered based on gross pathology and histopath-

ological findings of viral inclusion.44 The shrimp microsporidian Enterocy-

tozoon hepatopenaei (EHP) was discovered as a novel microsporidian

based on histopathological observation of cytoplasmic spores and multi-

nucleated plasmodia in the shrimp hepatopancreas.45 In these cases, the

disease was identified histopathologically before its causative agent

became known to science and before any molecular diagnostic

procedures were available for the causative agents. Recent widespread

use of molecular diagnostics (Level III) in aquaculture has shifted the

focus of diagnostic application away from observational approaches

(Level I and II). However, there has been some evidence indicating that

molecular diagnostic methods, including those from published papers,

The WOAH recommended protocols and commercial kits, sometimes

give false-positive results (see Refs. [46–48]). Clinical observations and

microscopic examination, on the other hand, are useful for presumptive

diagnostics, which guides the choice of the appropriate level II diagnostic

test(s) and serves as a clinical judgment in diagnostic error(s). Thus,

disease diagnostics should involve a combination of fundamental and

sophisticated procedures, including macroscopic, microscopic and

molecular investigation, to achieve accurate and meaningful results. In

this review, we therefore revisit and emphasize the necessity for

fundamental diagnostic procedures for tilapia diseases. Furthermore,

current and emerging molecular diagnostic methods are discussed, and

their future prospects are critically addressed.

2 | BACK TO BASICS: THREE LEVELS OF
DIAGNOSTICS FOR INFECTIOUS DISEASES
IN AQUACULTURE

Disease diagnostics is the procedure by which the causative agent of an

infectious disease is identified. The Food and Agriculture Organization

of the United Nations (FAO) and the Network of Aquaculture Centers

in Asia and the Pacific (NACA) have long promoted the use of levels I, II

and III for disease diagnosis39,49 (Figure 3). The principle being that none

of the three diagnostic levels function in isolation. They form a contin-

uum of observations (Figure 3) with strong linkages needed for accurate

and rapid diagnosis (e.g., for general health surveillance, health certifica-

tion of import stock and to reduce the risk of disease introduction into

disease-free areas) so that appropriate and effective management mea-

sures can be rapidly applied.

Level I provides the foundation and is the basis for accurate inter-

pretation of results obtained from Levels II and III laboratory findings.

It also sets the foundation for ‘presumptive’ and ‘confirmatory’
diagnostic test reporting. Presumptive tests establish if a sample is not

infected by a pathogen, or that it is likely infected by a pathogen. In

the latter case, it may remain presumptive where the test cannot

distinguish pathogenicity (just presence/absence) or the exact identity

of the pathogen (e.g., endemic from exotic strain/species). Confirma-

tory tests are then required to confirm (or refute) the presumptive

analysis. Level I may be sufficient for recurrent, pathognomonic

F IGURE 3 The three diagnostic levels (I, II and III) are a continuum of observations; each level builds on the other and contributes valuable
data and information to build a diagnostic case for optimum diagnostic accuracy. (Image by M.G. Bondad-Reantaso.)
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(i.e., clinical signs are specific to a particular pathogen or environmen-

tal stressor) infection. However, confirmatory diagnoses, most com-

monly, require Level II or III equipment and expertise to distinguish

significant pathogens from more benign, infectious species or strains.

Level II laboratories include the equipment and experienced per-

sonnel to undertake analyses that can detect and/or identify a range

of pathogens. Level II laboratory personnel can perform parasitology,

histopathology, bacteriology and mycology examinations. Level II,

particularly histopathology, remains the gold standard, especially for

unknown and emerging diseases.

Level III diagnostics encompass techniques that target a specialized

pathogen or group of pathogens or require highly specialized equipment.

Level III laboratories are highly specialized and many such laboratories

are accredited nationally or by the WOAH as ‘Reference Laboratories’.50

These laboratories can also be used to confirm disease-freedom to rein-

force national health certification for import-export purposes. Use of

Level III techniques support Koch's postulate to prove that a particular

organism causes a particular infectious disease is important, especially

for first time diagnosis of an unknown disease in a country.

Level III diagnostics rarely consider interactions at the

host–pathogen interface (pathogenicity) as it relies on detection of

molecular signals of these interactions and does not take environmental

parameters into account. Thus, any correlation falls on linkage with Level

I or II diagnostic observations. The increasing availability of field rapid test

kits has been a major advantage for field extension officers, aquatic

animal health specialists and farm veterinarians, but brings into play the

risk of false/negative results without adequate user training and

interpretation. Thus, the importance of conclusive diagnoses being based

on more than a single test cannot be under-estimated, and is now clearly

outlined by the WOAH50 for their listed diseases. Accuracy of results is

significantly augmented by two or more consistent results, especially of

new or previously unknown disease outbreaks.

Three levels of diagnostics can be flexibly applied for infectious

diseases of tilapia including bacterial, viral, parasitic and fungal

diseases (Figures 4 and 5). At level I, presumptive diagnostics

comprises observation of abnormal behaviours, clinical presentation,

historical record, environmental parameters and preservation of

samples for subsequent analyses in levels II and III. Fish from an

affected pond/cage usually exhibit abnormal swimming behaviour,

such as failure to school, with separation of sick individuals in the

corner or bottom of the pond or cage. Diseased fish may show pale

colouration, dark colouration, reddish gill opercula, skin haemorrhage

and scale protrusion. Internally, clinically sick fish can exhibit a pale,

watery and necrotic liver, accumulation of yellow ascetic liquid in the

peritoneal cavity and gas in the intestine.11,43,51 At level II, presence

of syncytial hepatitis is considered pathognomonic for TiLV infection,

while intracytoplasmic inclusion bodies may also, occasionally, be

observed.43 More recently, liver tissue smears stained with

Haematoxylin and Eosin (H and E) has been found to be a simple and

effective approach for rapid screening of syncytial hepatitis (or giant

cells) (experience from HT Dong, see Figure 4). Several molecular

techniques including reverse transcription PCR (RT-PCR), nested or

semi-nested RT-PCR, RT-qPCR, RT-LAMP and in situ hybridization

(ISH)11,47,52–57 culturing of virus using cell line,11,56,58 TEM11,43,59 and

enzyme-linked immunosorbent assay (ELISA)60 have been applied for

diagnostics of TiLV at level III.

Similarly, bacterial diseases (e.g., Streptococcosis, Columnaris,

Edwardsiellosis, Francisellosis and Aeromonasis) in tilapia can be

F IGURE 4 Illustration of three levels of disease diagnostics for tilapia lake virus disease in tilapia. (Image by H.T. Dong.)
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presumptively diagnosed using levels I and II, including clinical signs,

wet-mount and smeared tissues stained with Giemsa or Gram stain.

Further analysis using level II (histopathology, bacterial culture,

biochemical screens) and level III (molecular methods) approaches is

usually employed for confirmatory diagnosis of suspected bacterial

diseases.61,62 An example of three diagnostic levels in the context of

Streptococcosis is shown in Figure 5. At level I, erratic swimming and

exophthalmia were considered important clinical signs for presumptive

diagnostic of Streptococcus sp. infection. Internally, diseased fish

presented with ascites, accumulation of liquid in the intestine and dark

brown and necrotic liver. At Level II, Gram or Giemsa-stained tissue

smears from head kidney was useful for visualization of extra- and

intracellular Gram-positive cocci. Histopathologically, diseased fish exhib-

ited increasing melanomacrophage centres and granulomatous inflamma-

tion with overload of melanophores in the liver. Streptococcus sp. could

be isolated from diseased fish using general culture medium such as blood

agar (BA), nutrient agar (NA), tryptic soy agar (TSA) or brain heart infusion

agar (BHIA), morphologically identified by microscopy of Gram stained

samples and biochemically characterized by commercial processes such

as API 20 Strep or Vitek. Several methods can be employed at level III for

confirmatory diagnostic of Streptococcosis including conventional specific

PCR,63 qPCR,64 LAMP,65–67 sequencing of 16S rRNA,68 ISH and TEM.

In reality, it is unlikely that disease outbreaks in tilapia farms in

LMIC are currently diagnosed in a timely manner by rigorous

diagnostic tests. Therefore, level I diagnostics should be considered

through observation of clinical signs,69 case history records, outbreak

description as part of the syndromic surveillance to support early

presumptive diagnosis and also to make informed evidence-based

decisions on appropriate further sampling and diagnostic approaches,

as well as immediate management actions. Preservation of biological

samples (biobanking) might be useful for retrospective diagnostics as

well as epidemiology and evolution of infectious agents.70–72 In the

context of tilapia disease diagnosis, the term ‘biobanking’ refers to

the systematic preservation of biological materials in a suitable man-

ner for later examination using advanced diagnostic methods. Fixed

tissues or blood (e.g., in ethanol 95% or RNA later for molecular test-

ing) and nonfixed frozen tissues or serum (e.g., storing at minus 80�C

or liquid nitrogen for later recovery of infectious agents) are examples

of these samples. The biological samples also include pathogens

(isolates/strains) recovered from diseased animals, extracted genetic

materials (DNA or RNA) and paraffin-embedded samples. Appropriate

biobanked samples provide the necessary materials for interconnect-

ing three diagnostic levels (I, II and III) which are required to progress

from presumptive to conclusive diagnoses.

3 | CURRENT AND EMERGING
MOLECULAR DIAGNOSTIC TECHNOLOGIES

The field of molecular diagnostics has, in recent years, developed rap-

idly and contributed substantially to our ability to detect and identify

microbial pathogens of aquatic organisms, most importantly the

detection of sub-clinical carriers. Various nucleic acid-based amplifica-

tion techniques are commonly used in detecting aquatic pathogens,

including conventional PCR, qPCR, dPCR, LAMP and CRISPR. The

strengths and limits of each technology, and their current and poten-

tial application for disease diagnosis in tilapia aquaculture is discussed

below.

F IGURE 5 Example of three levels of disease diagnostics for Streptococcosis in tilapia. (Image by H.T. Dong.)
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3.1 | Polymerase chain reaction

3.1.1 | Conventional polymerase chain reaction

Polymerase chain reaction (PCR) is a method that employs a

thermostable polymerase to amplify a specific region of DNA defined

by a pair of primers. PCR relies on thermal cycling; the DNA templates

are exposed to repeated cycles of heating and cooling to permit DNA

melting, annealing of the primers and DNA synthesis by the

polymerase. This reaction generates large numbers of DNA synthetic

copies from a small amount of DNA template (Figure 6a). When the

reaction is 100% efficient, approximately 109 copies of DNA target

can be produced per template after 30 cycles. As primer and

deoxynucleotide triphosphate (dNTP) are consumed during the reac-

tion, single-step PCR has limited sensitivity. Nested PCR, two succes-

sive PCR reactions, using second round primers specific to the first-

round amplicon, provides increased sensitivity and specificity, and has

been developed for detecting pathogens in sub-clinically infected ani-

mals. The PCR procedure involves extraction of DNA (or RNA) from

host tissue samples, followed by amplification of target DNA. A Taq

polymerase, a major component of PCR, will not work on an RNA

template, so PCR cannot be used to directly amplify an RNA molecule.

For detecting RNA viruses, extracted RNA must be first transcribed

into its complementary DNA (cDNA) by the enzyme reverse transcrip-

tase (RT). This method of RNA amplification is called reverse

transcriptase-polymerase chain reaction (RT-PCR).

Advantages of PCR-based diagnosis include their high sensitivity

and specificity, rapid turnaround, elimination of the need for prior

isolation or culturing of microorganisms and relatively low cost. The

method is especially useful for detecting pathogens in inapparent

infected individuals and in identifying pathogens that are unculturable,

such as shrimp or molluscan viruses, or difficult to culture, such as

intracellular bacteria. However, PCR requires trained technicians for

optimization and reliable diagnostic results, along with well-equipped

facilities with strict protocols for nucleic acid extraction and

processing. PCR is susceptible to contamination and requires strict

consistency of procedures for high throughput automation.

Conventional end-point PCR/RT-PCR (including single, semi-

nested, nested PCR, duplex and multiplex PCR) has been commonly

used for the detection of infectious pathogens in tilapia such as

TiLV,11,47,57,73 TiPV,74 NNV,75 S. agalactiae,76,77 S. iniae.78,79 In tilapia,

S. agalactiae and S. iniae are the two most frequently detected

F IGURE 6 Illustrations depicting the backbones of conventional PCR (a), quantitative PCR (b) and digital PCR (c). (Images by
T. Chaijarasphong and H.T. Dong.)
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bacteria that cause streptococcosis. Both cause similar clinical signs,

thus a duplex PCR using two primer pairs and a differential PCR using

a single primer pair were developed for detecting and differentiating

these two bacteria.63,80 Multiplex PCR was also developed for

serotyping of S. agalactiae.81

PCR methods have also been developed for detecting F. orientalis

and F. columnare,82,83 which are fastidious bacteria that require

time-consuming, complex culture media and biochemical assays for

non-molecular infection diagnosis in tilapia.

Edwardsiellosis and motile Aeromonas septicemia (MAS) are

among the most prevalent bacteria detected following mortality in

freshwater fish, including tilapia. PCR-based methods were developed

for detecting of E. ictaluri and E. tarda84 and applied for tilapia.85 For

Aeromonas bacteria, PCRs targeting the virulence-associated genes,

hemolysin and aerolysin, were developed to identify A. hydrophila

isolated from tilapia with MAS.86

3.1.2 | Quantitative real-time PCR

Quantitative real-time PCR (qPCR) is a well-established method for

diagnosis of aquatic animal diseases. Amplification of target nucleic

acids can be detected in real-time during PCR through the use of

either sequence-specific fluorescent-labelled oligonucleotide probes

(e.g., TaqMan), or sequence-independent fluorescent dyes (e.g., SYBR

Green I).87 The presence and quantity of a target DNA can be

determined by its cycle threshold (Ct) value, which corresponds to the

cycle number when the fluorescence level is significantly above a

pre-defined, experimentally determined threshold (Figure 6b). This

method eliminates post-PCR gel electrophoresis and thus reduces the

risk of cross-contamination between samples during loading of the

gel. Usually, a cut-off Ct value is determined based on a limit of

detection established experimentally. This helps to eliminate false

positives based on non-specific amplifications, and the test is

interpreted as positive if the Ct value is less than the cut-off Ct. If the

Ct value is greater than the cut-off value (i.e., below the limit of

detection), the test may be interpreted as negative.

Quantitative real-time PCR measures fluorescence intensity and

can be used to quantify the number of copies of target nucleic acids

present in a tissue sample to determine the viral (or other microorgan-

ism) loads. Quantification of a specific virus in tissues of infected

animals is one of the most important means of monitoring the pro-

gression of a disease. Cell culture-based methods of quantifying path-

ogens are time-consuming and not applicable to some aquatic

organisms, such as shrimp, for which cell culture systems have not

been developed. qPCR has the advantages of rapid, high-throughput

and a wide dynamic range (7–8 log10) for quantification; it can be

multiplexed to detect several targets in a single reaction.

RT-qPCR or qPCR procedures have been developed and

optimized for the detection and quantification of viral or bacterial

loads in infected tilapia. Target pathogens include TiLV,55,56,88

ISKNV,89 TiPV,74 S. agalactiae64,90 and F. orientalis.91–93 Several

multiplex TaqMan qPCR assays have also been developed to detect

and quantify three to four pathogen species in a single PCR test, such

as F. orientalis, S. iniae and S. agalactiae94; A. hydrophila, A. veronii and

A. schubertii95; and E. ictaluri, E. tarda, E. anguillarum and E. piscicida.96

3.1.3 | Digital PCR

Digital PCR (dPCR) uses the same analytical process as qPCR, but is used

to quantify the absolute number of target DNA molecules.97 In dPCR, the

DNA template and reagents (identical to the qPCR reaction mixture,

including pathogen-specific primers and probe) are mixed and then parti-

tioned, either in emulsion droplets or in wells, on a nanofluidics chip.

dPCR amplification is then performed on each of the partitions. At the

end of the dPCR, each partition is read, and the absolute quantification of

DNA template is calculated with Poisson statistical analysis. The process

is ‘digital’ in that each partition is scored as either 1 (positive) or 0

(negative) (Figure 6c). It is important that the DNA template be

adequately diluted, as most partitions contain one or no target DNA

molecules.98,99

Digital PCR has advantages over qPCR in that dPCR does not

require a standard curve for quantifying the DNA template and

provides more accurate quantitative results, because the presence of

PCR inhibitors has little effect. There are two disadvantages to dPCR:

(1) it is laborious and has a lower throughput, and (2) it has a smaller

dynamic range than qPCR, so samples need to be diluted within a

specific range to generate accurate results.

Digital PCR is relatively new to aquaculture so has only been

applied to few fish pathogens. dPCR methods are available for

ISKNV100 and S. agalactiae.101 The detection limit of ISKNV dPCR

was determined to be 1.5 copies/μl, which is substantially lower than

the 34 copies/μl of a TaqMan qPCR. This assay was used to detect

ISKNV in mandarin fish (Siniperca chuatsi) and shown to have a higher

positive rate (65%) than that of qPCR (30%).100 Similarly, the latter

method was developed for absolute enumeration of S. agalactiae in

tilapia tissue which is more sensitive than conventional plate count

method and qPCR.101 These results suggest that dPCR presents a

promising diagnostic platform for other tilapia pathogens.

3.2 | Isothermal amplification

Isothermal amplification methods (IAM) present a powerful class of

nucleic acid detection analytics that provide streamlined workflows and

rapid turnaround times, while preserving the diagnostic merits of

conventional PCR. By using polymerases capable of replicating nucleic

acids at a constant temperature, IAM avoid the thermal cycling

associated with PCR, making them ideal for on-site diagnosis in areas

lacking scientific resources and manpower. To date, a plethora of IAM

have been developed and implemented with varying degrees of success,

including loop-mediated isothermal amplification (LAMP), recombinase

polymerase amplification (RPA), nucleic acid sequence-based

amplification (NASBA), helicase-dependent amplification (HDA), rolling

circle amplification (RCA) and cross-priming amplification (CPA). This

section of the review will focus on two IAM that show potential for rapid

detection of tilapia diseases: (1) LAMP, by far the most frequently used
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IAM, and (2) RPA, which has grown in use over the last decade as a result

of its improvements over LAMP's shortcomings. Additionally, we will

discuss the combination of isothermal amplification and Clustered

Regularly Interspaced Short Palindromic Repeats (CRISPR) diagnostic

analyses, which open up new potential applications currently not feasible

with IAM alone.

3.2.1 | Loop-mediated isothermal amplification

A typical loop-mediated isothermal amplification (LAMP) reaction

consists of a DNA template, four to six primers targeting six to eight

distinct regions along the target DNA, and the large fragment of Bacillus

stearothermophilus (Bst) strand-displacing DNA polymerase.102,103 The

reaction is typically completed within an hour at a temperature of

60�C–65�C and progresses exponentially through characteristic,

dumbbell-shaped DNA intermediates, eventually generating concatemers

of various sizes harbouring the target sequence (Figure 7a). This size

heterogeneity of LAMP products manifests as ladder-like bands when

analysed by agarose gel electrophoresis. To detect RNA viruses such as

TiLV, reverse transcription step by reverse transcriptase (RT) must be

incorporated into the procedure to produce cDNA from the RNA target

prior to LAMP. Alternatively, a newer generation of Bst polymerase, Bst

3.0, that shows high reverse transcriptase activity, could be utilized for

single-enzyme RT-LAMP protocols.104 LAMP platforms have been

described for the detection of tilapia pathogens, including Streptococcus

agalactiae,65–67 Flavobacterium columnare,105 Shewanella putrifaciens,106

ISKNV107 and TiLV.54,108,109 These applications exhibit high sensitivity

and specificity for their respective targets, with the lowest limit of

detection reported at 1 viral copy per reaction, approximately 100 times

lower than that typically obtained using conventional PCR.54

While different LAMP assays use similar nucleic acid amplification

procedures, they vary in their visualization methods, which range from

being laboratory oriented to field compatible. Agarose gel electrophoresis,

for example, is commonly employed in laboratory settings, but it is

time-consuming and requires extensive reagent preparation and handling.

While it can be used to validate amplicon size in PCR, this advantage is

lost in LAMP due to the products' ladder-like appearance precluding

direct size comparison. To further streamline detection, colorimetric dyes

such as SYBR Green,109 calcein105,106,108 and hydroxynapthol blue107 can

be incorporated to LAMP reactions. The use of these reporters enhances

field deployability of the assay, but they are sequence-independent and

F IGURE 7 Illustrations depicting the backbones of RPA (a), LAMP (b) and CRISPR-based detection (c). (Images by T. Chaijarasphong.)
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thus incapable of discriminating between specific and spurious

amplification products. To exclude non-specific amplicons,

sequence-specific hybridization probes, such as gold nanoparticles (AuNP)

coated with single-stranded DNA (ssDNA), can be used.54 Upon

denaturing and reannealing of LAMP products, the gold-conjugated

ssDNA hybridizes to its complementary region in the valid amplicon,

preventing AuNP from aggregating in the presence of high salts. As a

result, a positive reaction retains the pink colour of dispersed AuNP, while

a negative sample precipitates AuNP and loses its solution colour.

3.2.2 | Recombinase polymerase amplification

While LAMP has substantially improved the convenience of tilapia

disease detection, the technique still faces a number of limitations

including the large number of primers required, which increases the

likelihood of primer–dimer formation, and the reaction temperature

that, while constant, is still sufficiently high to require a heating

device.110 In comparison, a relatively recent IAM called recombinase

polymerase amplification (RPA) requires a relatively low temperature

between 35� and 42�C that can be supplied instrument-free, has a

short reaction time of 5–20 min, and requires only two primers, similar

to PCR.111 This assay relies on a bacterial recombinase protein to

partially unwind the target DNA duplex and enable primer annealing

to the complementary regions.112 The reaction also contains

single-stranded DNA-binding proteins that sequester the displaced

DNA strand and prevent it from reannealing (Figure 7b). With primers

in place, DNA polymerase initiates exponential DNA amplification and

generates a large amount of daughter DNA that can be visualized by

agarose gel electrophoresis, fluorescence or lateral flow

detection.113,114 To detect RNA, a preincubation step with reverse

transcriptase at 42�C can be directly incorporated into an RPA

reaction, yielding an RT-RPA workflow. Thus far, RPA methods have

been used to detect a number of pathogens affecting tilapia, such as

Aeromonas hydrophila, Flavobacterium columnare and Francisella

noatunensis subsp. orientalis, with an analytical sensitivity of up to

15 DNA copies per reaction.115–118

3.2.3 | CRISPR detection

Due to their low reaction temperatures, IAM like LAMP and RPA are

intrinsically susceptible to primer dimer formation and non-specific

amplification. Additionally, the sensitivity of the assays is highly

target-dependent, with challenging targets needing extensive,

iterative optimization to enhance sensitivity. Integrated with CRISPR

detection, specificity and sensitivity of IAM can be raised in a

plug-and-play manner.119,120 The CRISPR detection method begins

with an RNA-guided CRISPR-associated protein (Cas) endonuclease,

such as Cas12a or Cas13a, recognizing and cleaving the target nucleic

acid (e.g., IAM amplicon). This on-target cleavage induces a conforma-

tional change in the Cas protein, causing it to indiscriminately digest

the ssDNA (in case of Cas12a) or ssRNA (in case of Cas13a) that

connects a fluorophore and its quencher in the synthetic reporter,

resulting in unquenching and consequent fluorescence emission121,122

(Figure 7c). Thus, the presence of the positive amplicon is converted

into a fluorescent signal observable by the naked eye, or, with some

modification, a colorimetric signal on a lateral flow dipstick.123,124 It

should be noted that Cas13a, which exclusively targets ssRNA,

requires the addition of RNA polymerase and nucleoside

triphosphates (NTP) as well as the presence of a promoter sequence

in one of the IAM primers to allow transcription. This CRISPR detec-

tion step may be preceded with practically any IAM, although RPA is

most commonly chosen due to its optimal temperature being close to

that of Cas proteins (37�C).125 On the other hand, the choice of Cas

proteins is restricted to a small number of Cas homologues capable of

carrying out reporter cleavage in the manner described

above.119,120,126 Indeed, Cas9, the most widely used homologue for

genome editing, lacks nonspecific secondary cleavage activity so

cannot readily be repurposed for diagnostic applications.119,127,128

Along with providing several modes of simple visual detection,

integration with CRISPR may improve the sensitivity and specificity of

IAM. The diagnostic Cas endonucleases are capable of increasing

sensitivity owing to their multiple-turnover kinetics, whereby the

cleavage of a single target DNA/RNA molecule activates Cas protein

for digestion of several reporter molecules, resulting in signal

amplification.119,123 Nonetheless, this sensitivity enhancement effect

is not always observed and is more frequently found with Cas13a

than Cas12a, presumably due to the superior reporter cleavage

kinetics of the former.124,129–131 In terms of increasing specificity, by

tailoring the CRISPR assay to target an area within the correct

amplicon, it is possible to filter out nonspecific amplification products

from IAM.129 Moreover, Cas endonucleases are exceptionally strin-

gent in their target recognition—a 2-bp mismatch between guide RNA

and target nucleic acid has been shown to drastically reduce the

cleavage activity.120,132 This low mismatch tolerance can be used to

genotype closely related pathogen strains whose sequences may be

too similar for traditional PCR or IAM alone to differentiate. CRISPR

detection, therefore, may allow for easy identification of geographical

isolates or genotypes of RNA viruses such as TiLV, which may grow

more diverse in sequence and virulence in the future due to their fast

mutation rates. While CRISPR detection has been extensively applied

to high-impact pathogens such as SARS-CoV-2, it has not yet been

harnessed for disease detection in tilapia, highlighting an untapped

opportunity for improving the efficacy and utility of the present

diagnostic toolbox.133,134

3.3 | Lateral flow immunoassays

Although nucleic acid detection approaches are highly sensitive and

specific, they are limited by long processing time, extensive liquid

handling and the requirement for scientific instruments. While IAM

have simplified overall procedures, some liquid handling and wait time

remain necessary. In comparison, lateral flow immunoassays (LFIA)

allow the user to simply apply the analyte to a ready-to-use strip and
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wait for 5–10 min before reading the result, which is colorimetric and

interpretable by eye. The analytic materials also have long shelf-life

and can be stored at room temperature. Therefore, despite their

generally lower sensitivity and specificity than comparable nucleic

acid detection technologies,135–138 the convenience of LFIA greatly

aid screening of diseases and presumptive disease diagnosis in tilapia,

as well as adoption by stakeholders who may be hesitant to use more

laborious, time-consuming, diagnostic platforms.

To perform an LFIA, the sample must first be isolated from the

source specimen. The extraction protocol varies depending on the

target organ, but generally involves briefly homogenizing the tissue in

a lysis buffer and collecting the supernatant.139,140 The supernatant is

then applied to a sample pad on a membrane-bound strip, before it is

immersed in a running buffer. Alternatively, some LFIA kits use the

lysis buffer for strip development, obviating the need for a dedicated

running buffer and reducing liquid handling steps. Through capillary

action, the analyte is drawn up the strip and comes into contact with

different antibodies along the way. In the ‘sandwich’ assay

format—the most used type—the analyte interacts with the first

monoclonal antibody at the conjugate pad. This antibody binds to an

antigenic site on the analyte with high affinity, and is labelled with a

reporter, commonly gold nanoparticles (AuNP). The antigen-antibody

complex and unbound labelled antibody travel to the first detection

line (test line) where another monoclonal antibody is embedded. This

antibody targets a different epitope on the analyte, causing the latter

to become sandwiched between two antibodies and yielding an

intense purple band (colour of nanogold) at the test line. Excess

AuNP-tagged antibody, on other hand, continues migrating to the

second detection line (control line) and gets captured by the embed-

ded antibody specific for the labelled antibody (Figure 8a). Thus, a

positive sample generates two coloured bands on the strip, whereas a

negative sample produces only one band at the control line. If the

control band is not visible, the result is deemed invalid.

If two monoclonal antibodies to the analyte are not available,

or if the analyte is too small to be bound by two antibodies

simultaneously, the ‘competitive’ assay format can be employed.

In this format, the test line is coated with the target analyte

instead of an antibody. If the analyte is present in the sample, it

sequesters the labelled antibody and prevents it from interacting with

the embedded analyte at the test line. In contrast, when the target

analyte is absent, the labelled antibody is free to bind to the embedded

analyte. Consequently, in this format, a positive result is represented by

F IGURE 8 Schematic showing the composition and mechanism of sandwich (a) and competitive (b) LFIA. (Images by T. Chaijarasphong.)

DONG ET AL. 197

 17535131, 2023, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12734 by N

at Prov Indonesia, W
iley O

nline L
ibrary on [31/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



a single band at the control line while a negative result yields two bands

on the strip (Figure 8b).

To date, LFIA tests have been developed for detection of diseases

in a variety of fish species,140–142 but so far only two are for tilapia

pathogens, Streptococcus agalactiae and Edwardsiella tarda.140,143

Although some pathogens, such as TiLV and Flavobacterium

columnare, lack dedicated LFIA, effective antibodies against them have

been identified and utilized to develop other immunoassays such as

immunohistochemistry, enzyme-linked immunosorbent assay (ELISA)

and fluorescence microscopy.144,145 In addition, antibodies capable of

recognizing host antibody directed against a specific pathogen have

been identified, which may be useful for interrogating the present and

past infection statuses of a fish population.60,146 While these

antibodies may serve as a good starting point for future development

of LFIA, further optimization may be required, as an antibody that

performs well in one type of assay may not perform well in another,

due to differences in antibody affinity and concentration, chemical

modification and microenvironment.

Although LFIA tests show great promise for routine disease

diagnosis in the tilapia farming industry, there are still some issues

that require attention. Currently available for only two tilapia

pathogens, the cost of lateral flow strips constitutes a large fraction of

the LFIA price per assay. Multiplex LFIA, capable of testing several

pathogens at once, will significantly reduce cost. With greater utility

and economic viability of the technology, LFIA should become more

accessible and of greater use to tilapia farmers for disease diagnosis,

improving protection from delayed detection or misdiagnosis of

disease outbreaks.

3.4 | Next generation sequencing for fish disease
diagnosis and epidemiology

Next generation sequencing (NGS) targeting molecular information

from infectious organisms for diagnostic purposes has a long history,

with the majority of standard methods for determination of infection

status in humans, animals and plants now dependent on thoroughly

validated PCR tests. These methods target highly specific loci of

differentiation within the target pathogen, but provide little

information beyond a well-defined case-positive or -negative within

specified detection limits. Whole genome sequencing (WGS), on the

other hand, provides the total information encoded in the genome of

the pathogen, which contains a wealth of clinically relevant data; from

antimicrobial susceptibility147 to high resolution strain identity, that is

valuable for epidemiology assessment and related disease

control.148–151 The value of such epidemiological detail has been

highlighted through the global severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) pandemic, where genomic information,

provided in near real-time, was employed to identify case origins, and

define quarantine controls which, in some cases, prevented further

spread.149,152,153 Indeed, epidemiological use of genomic data has

attained global awareness as a result of daily updates from

public health authorities.

In addition to targeted genome sequencing, NGS technology also

lends itself to non-targeted or metagenomic NGS (mNGS), where total

nucleic acid from a sample is sequenced directly, or generic regions

such as 16S ribosomal RNA (16S rRNA) are amplified and then

sequenced.154 The resulting pool of sequence data can be de-noised,

TABLE 1 Pros and cons of available sequencing technologies

Technology Read length Total data Pros Cons

Illumina iSeq, MiniSeq,

MiSeq and NextSeq,

Novaseq*

2 � 150 bp

2 � 250 bp*

1.2–6000 Gbp Becoming ‘standard’ for short reads.
Accurate data, random error can be

polished out.

Established and well-validated,

open source/community

data analysis tools

Short reads

High capital cost

Requirement for laboratory

infrastructure even for

‘benchtop’ units

Ion Torrent Personal

Genome

Machine (Thermo Fisher)

200 or 400 bp 30 Mbp to 2 Gbp Fast output (2.3–7.3 h)

Moderately priced

Short reads

Limited community analysis tools

Requirement for lab infrastructure

Pacbio Sequel II, Sequel IIe 30–40 kbp 160 Gbp per SMRT cell Long reads, low systematic error

rate (~0.1% for HiFi reads)

High capital cost

Large footprint

Requirement for lab infrastructure

High run cost

Oxford Nanopore

Technologies

MinION

Up to 2.3 Mbp164 ~30 Gbp per MinION flow cell

(~10 Gbp per cell per day)

Long reads

Low cost

Pocket sized instrument

No requirement for lab infrastructure

or mains power

Consensus error rate <0.005%

(R10.4 flow cell)

Open source/community data

analysis tools

Systematic error rate

~5% for raw reads

Note: Data from manufacturers' websites, October 2021.
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assembled and analysed for presence and prevalence of possible

pathogens. The non-targeted nature of mNGS makes it particularly

useful for pathogen discovery. Indeed, the complete genome

sequence of TiLV was first identified from metagenomic data derived

from Illumina sequencing,52 while a novel tilapia parvovirus

HMU-HKU-1 was also discovered by Illumina sequencing from

metagenomic libraries enriched for viral nucleic acids.155

While the advantages of genomic and metagenomic information

to disease diagnostics and epidemiology are evident, they are

relatively recent additions to the clinician's toolkit, largely due to the

cost and time required to generate the information. Sequencing costs

have fallen dramatically in the last two decades, greatly out-pacing

Moore's law.156 For example, it is estimated that the first human

genome cost in excess of $100 million US. In contrast, the sequencing

cost for the whole human exome (about 6 giga base pairs [Gbp] of

data) is now around $1500 US. Sequencing cost is somewhat

proportional to the amount of data required. Bacterial genomes are

1000 times smaller than a human exome at 2–6 megabase pairs

(Mbp), and viral genomes even smaller, just 2–3 kilobase pairs (kbp)

for nodaviruses, and 9–10 kb for TiLV.157 Consequently, with

adequate multiplexing, it is possible to generate sequence data for a

bacterial genome for substantially less than $100 US. However,

sequencing is only one part of the cost, so there is a strong tendency

to underestimate the true cost of generating useful clinical genomic

information, including sample preparation and downstream

bioinformatics analysis.158

Current NGS technologies can be separated into two paradigms:

(1) short-read and (2) long read sequencing.159 There are pros and

cons to each of the technologies and instruments currently in general

use (Table 1). Short read sequencing is now dominated by the Illumina

platform with very well-established laboratory preparation protocols

and a wide range of well tested, open-source, data analysis tools and

complete pipelines for mapping and assembly.160 Moreover, there are

excellent open-source tools for variant calling and clinically relevant

typing, much of which can be performed directly from Illumina read

data without need for time consuming assembly.161,162 Short reads

become problematic when structural elements need to be correctly

resolved.163 These might include critical plasmids, transposons or

structures of long variant regions such as lipopolysaccharide (LPS)

O-antigen and capsular polysaccharide (CPS) where rearrangement

can lead to clinically relevant serotype switching. Pacbio Single

Molecule Real-Time (SMRT) and Oxford Nanopore Technologies

(ONT) nanopore sequencing are the major ‘third generation sequenc-

ing’ (TGS) platforms for generation of long read data that can fully

resolve genomes to chromosome level. Because SMRT is polymerase-

based, read-length is constrained by the enzyme chemistry and

currently generates up to 30 kbp reads. SMRT provides high

consensus accuracy due to effectively re-sequencing the same circular

DNA constructs by the immobilised polymerase within the SMRT cell

waveguide enabling highly accurate chromosome-level closure of

genomes.163 Nanopore directly sequences DNA molecules by actively

drawing them through a biological pore in a solid state membrane

while measuring the charge across the pore. The length of read

generated is therefore only limited by the integrity of the DNA

loaded, with the longest read recorded to date being 2,272,580 base

pairs (bp).164 The compromise with nanopore sequencing is relatively

high systematic sequencing error (~5%) in raw reads, as the electrical

resistance across the pore is influenced by several bases in the pore

and their methylation state.165 Nevertheless, the latest version of the

nanopore MinION flow cells chemistry (R10.4), coupled with

continuously improving base-calling algorithms, can provide a

consensus accuracy of 99.995% from nanopore sequencing runs. The

major advantage of the nanopore platform is the very low Minion

instrument cost ($1000 US), and capability to operate the instrument

under field conditions to generate clinical data in real time.166

3.5 | Application of WGS to fish disease diagnosis
and epidemiology

In infectious disease investigation, genomic data is most useful for the

high resolution it can deliver for epidemiology. The origins of disease

introduction and most likely routes of transmission have been

well-illustrated by WGS for some fish pathogens. For example, the trans-

Atlantic dissemination of Renibacterium salmoninarum was postulated by

genomic investigation,167 while presence of serotype O2 Yersinia ruckeri

in Tasmania and likely transmission of serotype O1b with salmonid eggs

from Tasmania to Chile was also identified using NGS.168 Introduction of

piscine Streptococcus agalactiae serotype Ib into Australia, probably with

imported tilapia in the 1970s and 1980s, and subsequent dissemination

and evolution in wild marine fish populations was determined using

Illumina short read sequencing.169 However, NGS platforms have utility

beyond WGS. Often, useful epidemiological and clinical information can

be derived by sequencing amplicons generated by diagnostic PCR

methods. For example, nanopore-based sequencing was recently

employed to sequence diagnostic PCR amplicons for rapid genotyping of

TiLV isolated from disease outbreaks in farmed tilapia.170 The ability to

conduct the sequencing locally and in near real time may be particularly

advantageous in evidence-based outbreak control. Thus, a simple

workflow for field application of nanopore sequencing in aquaculture

may become a useful tool in the near future (Figure 9). In addition to sim-

ple field sample collection and processing protocols, utility of the tech-

nology will depend upon user-friendly interfaces that can interpret and

correct read-data in real-time direct from the instrument and provide

clinically relevant information back to the user, for example via a

smartphone.

4 | WHAT IS ON THE HORIZON FOR
EMERGING TECHNOLOGIES AND TILAPIA
DISEASE DIAGNOSTICS?

4.1 | Artificial intelligent and machine learning

The rapid evolution of sequencing capabilities and costs, coupled to

simplified analytical workflows, makes them accessible to fish disease
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diagnostics with capacity to generate a mass of genomic data.

Translating such data into clinical decisions or, at least, to information

that is useful to clinical decision making by personnel on the ground,

however, remains challenging. In the human genome context, the

‘$1000 genome and the $100,000 analysis’ has been discussed.171

Solutions, or partial solutions to this problem may lie in increasing use

of artificial intelligence (AI). AI can be divided into expert systems and

machine learning. Expert systems are devised around pre-defined sets

of rules derived from clinical or veterinary experts to create a

knowledge base that is mined by the expert system to provide

computer-aided decision support.172 However, as scenarios become

more complex, as indeed they are in the diagnosis of infectious

diseases in aquaculture environments, expert systems are clearly

limited by the information in the knowledge-base. Machine learning

overcomes this constraint by employing algorithms that devise and

refine their own sets of rules from data, allowing them to learn as

more data become available. Ensuring the quality of the training data

then becomes the major limitation.172 Machine learning is already

integrated into the ONT' base calling algorithms for interpretation of

the current signal into bases, with several available nanopore

community and open source bioinformatics post-processing

applications, all based on artificial neural networks.165 To get from

sequence to clinically relevant actionable information is more

challenging. For example, predicting antimicrobial susceptibility to

enable rapid evidence-based therapeutic intervention is feasible from

whole genome or metagenomic data using neural networks.173

Predicting antibiotic susceptibility direct from raw nanopore

sequencing reads was an early application of the technology.174 To

provide comprehensive clinical and epidemiological information on

infectious agent, serotype, sequence type and antimicrobial

susceptibility, direct from sequence reads is feasible by taking a k-mer

approach.175 Although there is a high computational overhead to

k-mer based analysis as datasets become large, by using an

application-specific database (e.g., fish pathogens) and binning k-mers

into differentially descriptive subsets,175 a classifier based on this

approach is highly feasible for fish infectious disease diagnostics.

Indeed, there is an open access development release of a k-mer

classifier and associated database for pathogens of aquatic organisms

including tilapia available from WorldFish.176 This is a field that is

moving very rapidly and the choice of online tools that are easy and

free to use is growing. The Danish Technical University provides a

suite of online tools and databases through their Centre for Genomic

Epidemiology portal including, for example, pathogen identity,

antimicrobial resistant genes (ARG) prediction and multilocus

sequence typing (MLST) direct from raw sequence data.177,178

Artificial Intelligence may also become applicable to Level I and

Level II diagnostics through interpretation of real-time environmental

and behavioural cues (level I) to alert to potential problems, although

perhaps not to the level of specific disease diagnostics. Sensor arrays

for water and environmental monitoring, measuring and controlling

feed intake and in-tank/cage camera systems for morphometric

analysis are already widely deployed throughout salmonid aquaculture

for automation. Coupling to AI is therefore highly plausible to provide

computer-assisted level I diagnostic alerts. For tilapia aquaculture, the

costs of sensor infrastructure will need to fall substantially to enable

adoption in the most important producing nations. Level II diagnostics

F IGURE 9 A hypothetical workflow for real-time field diagnostics using Oxford Nanopore sequencing. (Images by A. C. Barnes and
J. Delamare-Deboutteville.)
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are already assisted by AI in human clinical medicine, particularly

cancer diagnostics, where screening of histopathological samples may

be aided by deep neural network-based machine learning algo-

rithms.179 It is also possible to combine AI with other more rapid

Level II laboratory methods such as infra-red (IR) spectroscopy

(30 min)180 or flow cytometry (3h)181 to provide same-day antimicro-

bial susceptibility test (AST) results and predict bacterial abundance.

Indeed biomarkers from blood measured by IR-spectroscopy coupled

to artificial neural networks can provide rapid non-invasive diagnosis

of Helicobacter pylori infection in children.182

4.2 | High throughput diagnostic systems

For local diagnostic testing of fish farm disease outbreaks, high

throughput of sample numbers is not a major factor, and high capacity

instrumentation can be expensive to operate when not used at

capacity. However, there is a use-case for high throughput diagnostics

in pathogen surveillance for biosecurity. For example, the screening of

broodstock and seedstock to certify specific pathogen free (SPF)

status, or for the screening of live or uncooked seafood prior to

international shipping for compliance with trade legislation to limit

transboundary spread of endemic diseases. For advances in high sample

number throughput for pathogen detection, we return to the SARS-CoV-2

pandemic. Here, rapid testing of hundreds of thousands of samples per day

by health authorities and the private sector has informed lockdowns and

tracked dissemination of new virus variants.149,183 For aquaculture

biosecurity, the need is somewhat different, in that testing fewer samples

for a cohort of pathogens of concern is more important than testing high

sample numbers for a single pathogen. But there are important advances

made during the pandemic that can be applied equally well to fish disease

diagnostics. For example, one of the major constraints (and costs) of

diagnostics is in sample preparation with many recommended molecular

assays stipulating particular extraction kits.184 Recent findings indicate that

for qPCR-detection of SAR-CoV-2 from clinical samples, the extraction

process can be substituted for a short high temperature treatment without

adversely impacting sensitivity.184 Molecular assays lend themselves very

well to high throughput as the small reaction volumes that are required

facilitate use of microwell plates (e.g., 384 wells) and array type

technologies. qPCR methods are standardised for many pathogens of fish

and are readily multiplexed by using different fluorochromes in probe-based

qPCR such as TaqMan. For tilapia, multiplexed qPCR detection of common

bacterial pathogen, Francisella spp., Edwardsiella spp. and Streptococcus spp.

was effectively used for disease surveillance on hatcheries in Costa Rica.94

The extent to which assays can be multiplexed in this way is quite severely

limited by the range of fluorochromes and the number of channels on the

instrument that can detect the differing wavelength emissions. Once

internal controls are accounted for, four to five pathogens per sample is the

limit to which the assay can be multiplexed. This problem can be reduced

by coupling the qPCR to electrospray mass spectrometry, in which the

qPCR amplicons from the multiplexed primer reaction are fed to a mass

spectrometer which then identifies which amplicons are present in each

sample by mass, eliminating the need for fluorochrome probes.185 This

method may enable quantitative detection of 13 or 14 different pathogens

per sample in a single reaction and is limited by the biochemistry of the

qPCR reaction with higher numbers of multiplexed primer sets. For

increased pathogen multiplexing, microarray-based chips may include

thousands of genetic loci with potential to identify tens to hundreds of

pathogens to variant level.186 Such arrays are quite costly but have been

used in human medicine for screening blood samples,187 and DNA

microarray genus-species 16S rRNA analysis for multiplexed detection of

key pathogenic bacteria have been explored in aquaculture.188 High

throughput microarray methods for tilapia disease diagnosis are limited but

may offer future perspectives to cover all key pathogens of tilapia including

bacteria, viruses and parasites.

4.3 | Environmental DNA and RNA for early
detection of pathogens from water

Environmental DNA and RNA (eDNA and eRNA) refer to genetic

materials found in environments such as water, soil, sediment, snow

or even the air. eDNA/eRNA include those within or shed and

excreted from any living or dead organisms, from viruses to unicellular

and multicellular organisms.189 Sample collection for eDNA/eRNA

investigation can be done once, or on a regular basis at a certain

timeframe and location for continuous monitoring. Following that, the

samples are treated to appropriate concentration processes

(commonly filtration, centrifugation or coagulation) before DNA, RNA

or total nucleic acid are extracted190,191 (Figure 10). The obtained

eDNA/eRNA is then subjected to either a metagenomic NGS

(or metabarcoding) approach, in which the contribution of organism

taxa can be identified simultaneously, primarily at the genus level, or a

target-specific conventional or quantitative PCR for detection of

species of interest189,192,193 (Figure 10). Application of eDNA/eRNA

has played an increasingly important role in both common and unusual

circumstances in aquatic ecosystems and aquaculture. Monitoring

eDNA, for example, can be used to look at organism diversity in the

context of natural conservation or to assess the biological impact of

climate change, changes in environmental parameters and

anthropogenic activities (e.g., oil spill, drilling and mining).194,195

eDNA/eRNA can be applied for disease screening to ensure free

status of any pathogens of concern particularly for biosecurity in the

fish/shrimp trade.196 eDNA monitoring can help identify invasive

species and assess endangered species in aquatic habitats.197–199

Furthermore, eDNA/eRNA has been used to assess the distribution

and abundances of waterborne pathogens, as well as the presence of

pathogenic agents in the environment.191,200

The application of eDNA/eRNA for tilapia disease diagnosis is still

limited, however, a straightforward approach for TiLV detection and

quantification from water that employed a simple iron flocculation

method for viral concentration coupled with a probe-based RT-qPCR

has been described.55 TiLV nucleic acid was detected and quantified

in water collected from affected ponds/cages as well as sewage, and a

reservoir. This approach might be effective for noninvasive monitoring

of TiLV in aquaculture environments, and allow suitable biosecurity
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interventions.201 Potential applications of eDNA/eRNA in disease

diagnosis have also been described in other fish species and their

pathogens, including the use of pathogen-specific detection

approaches, metabarcoding strategies and a combination of both. For

instance, the detection and quantification of red sea bream iridovirus

(RSIV) in a challenge model with Japanese amberjack (Seriola

quinqueradiata) and farmed red sea bream (Pagrus major) revealed high

viral loads at least 5 days before fish mortality, suggesting potential

application of eDNA assay for early forecast of disease.55,202,203

Multiple target pathogens were detected using eDNA samples

collected from Atlantic salmon (Salmo salar) farm sites to assess the

potential of pathogen transmission from domesticated to wild fish

populations sharing the same habitat.204 The use of universal

metabarcoding markers (e.g., mitochondrial genes, internal transcribed

spacer (ITS) sequences and small-subunit ribosomal RNA gene) as

potential monitoring tools for harmful parasites and microalgae in

cultured fish have been described.205 A synergistic association of

bacterial microbiome and abundance of the parasitic ciliate

Chilodonella hexasticha with mortality in barramundi (Lates calcarifer)

has been demonstrated using a combination of metabarcoding- and

targeting-based approaches.206 eDNA assays, on the other hand, have

indicated an antagonistic effect between bacterial loads and viral

pathogens.207,208 As aquaculture is an interactive complex system,

environmental parameters together with host and pathogen factors

should be taken into account for eDNA/eRNA data analysis and

interpretation. The advancement of technology in the eDNA/eRNA

methods described in other fish species can easily be used for tilapia

health monitoring and disease diagnosis. Availability of curated

genomic sequence databases of tilapia pathogens and other aquatic

organisms characterized from healthy and diseased tilapia culturing

environments will support accurate eDNA/eRNA species-level

identification and interpretation of complex microbial assemblages. In

the near future, more accessible and inexpensive NGS and

qPCR/dPCR facilities and services will promote a rise in the use of

eDNA/eRNA for early diagnoses and disease forecasting in tilapia

farming systems.

4.4 | Point-of-care or pond-side testing

The term ‘point-of-care testing’ (POCT) describes diagnostic tests, or

any other tests, that are not confined to a laboratory setting and, thus,

can be conducted close to/in the direct proximity of the testing

subjects, typically by people without professional training. Different

circumstances may require different POCT solutions involving

different testing devices or regimes. For fish farmers, POCT allows

F IGURE 10 eDNA/eRNA application in tilapia disease diagnosis. Pathogen(s) collected with water samples from fish culture systems are
usually concentrated prior to nucleic acid extraction. Pathogen(s) of concern can be detected by species-specific or metabarcoding approaches.
(Images by S. Senapin and S. Taengphu created in BioRender.com.)
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anyone to easily and quickly perform accurate testing close to or at

the pond side. POCT may also be undertaken in many locations such

as fish processing plants, wet-markets or by customs biosecurity

officers for monitoring and screening purposes. In summary, its

relevance in aquaculture may include ‘pond-side testing,

‘point-of-need testing’, ‘remote rapid testing’ or ‘decentralized
testing’.209,210

Accurate diagnostics for effective treatments are not available

for many infectious diseases in tilapia, making good farm practices

and prevention the best strategies for achieving optimum

performance results. A rapid, accurate and reliable diagnosis allows

the farmers to make immediate and informed decisions and take

appropriate actions in the fastest manner possible to better manage

and control diseases, especially at early stages when clinical signs

may not be easily identified by the farmers.211 However, most tilapia

farms exist in relatively remote locations with limited accessibility to

laboratory testing facilities. Sending clinical samples to specialized

laboratories has the drawback that it usually takes a long time (days

to weeks) to obtain test results. For diseases that quickly lead to

high morbidity and/or mortality, having results one or two weeks

after sample submission is not optimal. Therefore, POCT tools that

provide quick and reliable testing results at the tilapia farm level are

much needed to shorten the test turn-around time for timely

decision-making.14

An ideal POCT should meet the ‘ASSURED’ guidelines (Affordable,

Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and

Delivered)212 put forward by the WHO.213 POCT should provide test

sensitivity and specificity comparable to those of laboratory testing in

a short time under a wide range of conditions. The equipment, when

needed, should be compact, work with a simple operating protocol,

with battery and built-in calibration and provide means for data

management (such as test results, date, time, sample, operator,

location, quality control and device info).214 Ideally, the reagent

should be provided in single-dose and ready-to-use format and

require no cold chain for shipping and storage. Concerns about POCT

focus mainly on risk of poor test performance due to oversights, such

as potential user errors, insufficient quality control and inadequate

storage of reagents and maintenance of devices (if any). Therefore,

clear instruction guides, user training, user-friendly design and

usability validation are some measures known to ensure correct use

of POCT.

Lateral flow immunoassay (LFIA) is the most widely commercially

available POCT platform. Working with little or no supporting

infrastructure, LFIA has advantages of being simple, rapid and

cost-effective. These features are very useful, especially in settings

with low resources, to improve decision making and turn-around time.

LFIA can be used to screen for infection and antibiotic resistant

markers to facilitate responsible and prudent use of antimicrobial

agents.215–217 However, to the best of our knowledge, no LFIA tests

for infectious diseases of tilapia are commercially available at time of

print.

Current LFIA tests are, in general, not consistently sensitive and

specific enough to meet the needs of early disease detection,

especially sub-clinical infections.218 Therefore, tests based on

molecular technologies are considered more reliable with greater

sensitivity for this purpose. Laboratory molecular technologies

mentioned in the previous sections, such as PCR, LAMP, RPA, CRISPR

and the Nanopore MinION sequencing platform, have all been

automated into single use commercial POCT assays prepacked with

required reagents for diagnosis of COVID-19 infection.219 The

automated steps include sample preparation, nucleic acid extraction,

amplification, signal detection, recording and processing and result

interpretation and presentation. Besides being able to improve

test specificity with its ability for strain identification with

single-nucleotide specificity through CRISPR base-pair matching,

CRISPR-based diagnostics for pathogen detection also hold great

promise in facilitating equipment-free diagnostics to allow POCT to be

easily accessible to more users.220,221 However, the majority of available

CRISPR-based platforms require an amplification step to enhance

sensitivity, significantly lengthening test turn-around time.222 Although a

number of PCR, LAMP and RPA assays have been reported for

detection of TiLV, ISKNV, S. agalactiae, S. iniae, L. garvieae and

F. columnare,67,105,107,223 to the best of our knowledge, only one

POCT RT-PCR test that works on the compact POCKIT platform

(GeneReach, USA) is commercially available for TiLV detection in tila-

pia. Designed to work with the fluorescence-based insulated isother-

mal PCR (iiPCR) technology,224,225 this compact platform provides

fast binary (positive/negative) results. Based on this platform, semi-

automated (POCKIT Combo) and fully automated (POCKIT Central)

systems are available for pond-side PCR testing at different settings.

The semi-automated POCT system generates results within two hours

with a protocol requiring minimal manual steps; one nucleic acid

extract can be used flexibly for simultaneous PCR testing of different

pathogens. The sample-in-answer-out POCT system, on the other

hand, fully automates the nucleic acid extraction and iiPCR steps and

works with preloaded single-use cartridges to provide results within

90 min, meeting particularly the needs of settings with limited human

resources.

The TiLV POCT RT-iiPCR assay is available in a lyophilized format

for easy shipping and storage. On the fully automated POCKIT Central

system, LoD 95% (limit of detection) of the POCT assay was

determined to be 12 genome equivalents. The POCT assay was

comparable to a reference semi-nested RT-PCR assay47 in analytical and

clinical performance. The two RT-PCR assays have similar analytical

sensitivity as their detection end points were within one log in a test

using a serial dilution of a TiLV-positive sample. A study testing

92 tilapia liver, brain, gill, muscle or mixed samples showed that

diagnostic performance of the two assays was also comparable. Positive

percentage agreement and negative percentage agreement were

94.44% (95% CI, 78.72%–100%) and 95.95% (95% CI, 90.4%–100%),

respectively (GeneReach Biotechnology Corporation data).

Development of commercial LFIA tests for the tilapia industry

may consider incorporating dedicated LFI readers and alternative

detection methods (fluorescence, chemiluminescence, electrochemical

signals, surface-enhanced Raman spectroscopy).216,226 These

technologies have potential to improve test sensitivity and enable
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quantitative testing. The use of readers also makes data digitalization,

tracking, storage and transmission possible.

The functions of POCT are being improved to enhance its

usability for different applications at various point-of-care settings.

First, the ability of multiplexing is favourable to improve testing

efficiency of POCT.227,228 Second, integration of easy, or no, sample

preparation enhances user-friendliness of POCT.229 Thirdly,

miniaturized integrated devices are being developed to enhance test

portability and user-friendliness.230 In the last decade, huge

progress has been made in microfluidics and microfabrication

technologies that enable automated pipetting, mixing, separation

and amplification in a single miniaturized device, with significant

reduction in sample and reagent volume, test turn-around time,

energy consumption and waste production.230 Fourthly, improving

connectivity of POCT to allow integration of accurate outbreak

reporting systems via a mobile app or computer connections, can

help with timely and accurate reporting of outbreaks to competent

authorities.214 Moreover, cloud-based reporting and artificial

intelligence (AI) have potential to further bridge what scientists

and aquatic health professionals can offer to meet the needs of

tilapia farmers at remote locations.231 The momentum

accumulated in the last decade in amplification, multiplexing,

microfluidics and data connectivity technologies, could be

integrated realistically and in different ways to build cost-effective

POCT for the tilapia aquaculture industry in the near future.

Continuous research and enhancement of POCT with the goal of

providing end-users with better and simpler access to biodetection

techniques will assist farmers in disease management and control

enhancing future tilapia productivity. Currently available techniques

are not widely used in aquaculture settings, owing mostly to their

relatively expensive prices, thus, efforts are also required to reduce

the costs of POCT.

5 | CONCLUSION

In aquaculture, diagnostic techniques are constantly evolving and

becoming more complex. The level I-III approach established over

20 years ago highlights the importance of the diagnostic continuum as

a quality control mechanism, especially for exotic or previously

unreported mortality events. They remain meaningful in light of

diagnostic technology advances and increasing recognition of the role

of the aquatic environment on both host physiology and pathogen

virulence. Accurate diagnosis of a disease can rarely be achieved by a

single test. A presumptive diagnosis, indicating a strong likelihood of

disease identification, is usually made with multiple tests to be

considered for confirmatory diagnosis (100% certainty of

identification of the causative pathogen). In order to reduce the risk

of misdiagnosis, inclusion of three levels of diagnostic observations

and use of a matrix of results gives the most solid foundation possible

for accurate diagnosis. This is essential for effective risk assessments

at the farm, regional, national and international levels of aquaculture

production, as well as for effective disease response and control.

Accurate diagnosis forms the basis for determining what the disease

condition is, the severity and cause(s) of the condition. Inaccurate

diagnoses can lead to ineffective or inappropriate control measures,

delay treatment and may cause severe economic loss. The choice of

diagnostic technique should follow the principles of being ‘fit-for-use,
fit-for-purpose’ with defined sensitivity and specificity and

cost-effectiveness within the pathogen–host–aquatic environmental

interaction framework. Diagnostic challenges to detect ‘unknowns’
and ‘emerging diseases’ will persist, however, our increasing

molecular databases and analytical tools should enhance our capability

to detect and identify these new pathogenic agents more rapidly and

accurately in the future compared with the present.

The intrinsic qualities of tilapia, as well as its biology, farming

needs and nutritional values, give it the inherent potential to become

one of the world's most important future food fish groups. The

inter-relationship of human, animal and environmental health

enshrined in the One Health philosophy, that is beginning to underpin

global health policy, means that the future of tilapia aquaculture must

centre on sustainable health management and biosecurity. There has

been a rapid proliferation in the development of novel diagnostic

methods, with many technical challenges having been overcome. The

major hurdle that faces the adoption of such powerful aids to

diagnosis is likely to be the rigorous validation required for them to be

accepted for transboundary animal movement and product entry into

supply chains. We recognize the potential for misapplication of new

technologies in aquaculture disease diagnostics, including tilapia, in

the absence of other diagnostic information and we emphasize the

importance of three continuous levels of disease diagnostics that

incorporate fundamental (Level I and II) and advanced (Level III)

approaches to optimize the diagnostic data value. It is likely that

LAMP, and NGS methods for tilapia pathogens will be validated and

join WOAH standard diagnostic tests, such as qPCR, in the near

future. We also expect to see incorporation of artificial intelligence,

machine learning, high throughput diagnostic systems and POCT into

diagnostic workflows in the relatively near future. Non-invasive sam-

pling using eDNA, in conjunction with highly sensitive diagnostic

technologies such as qPCR and dPCR for early pathogen detection

and disease forecast, should also be incorporated in the coming years.

Regulatory and socio-economic hurdles aside, the technology for fast,

easy, accurate and farmer-accessible diagnostic tools for future

sustainable aquatic food is already here.
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