
Breeding for robustness: investigating the genotype-by-environment
interaction andmicro-environmental sensitivity of Genetically
Improved Farmed Tilapia (Oreochromis niloticus)

S. Agha*†, W. Mekkawy†‡, N. Ibanez-Escriche*§, C. E. Lind‡ , J. Kumar¶, A. Mandal¶,

J. A. H. Benzie‡** and A. Doeschl-Wilson*
*The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Edinburgh, UK. †Animal Production

Department, Faculty of Agriculture, Ain Shams University, Shubra Alkhaima, 11241, Cairo, Egypt. ‡WorldFish, Jalan Batu Maung, Batu

Maung, Bayan Lepas, 11960, Penang, Malaysia. §Institute for Animal Science and Technology, Universitat Polit�ecnica de Val�encia, 46022,

Val�encia, Spain. ¶Rajiv Gandhi Center for Aquaculture, Vijayawada, Tamil Nadu,India. **School of Biological Earth and Environmental

Sciences, University College Cork, North Mall Campus, Cork, Ireland.

Summary Robustness has become a highly desirable breeding goal in the globalized agricultural market.

Both genotype-by-environment interaction (G 9 E) and micro-environmental sensitivity are

important robustness components of aquaculture production, inwhich breeding stock is often

disseminated to different environments. The objectives of this study were (i) to quantify the

degree of G 9 E by assessing the growth performance of Genetically Improved Farmed Tilapia

(GIFT) across three countries (Malaysia, India and China) and (ii) to quantify the genetic

heterogeneity of environmental variance for body weight at harvest (BW) in GIFT as a

measure of micro-environmental sensitivity. Selection for BW was carried out for 13

generations in Malaysia. Subsets of 60 full-sib families from Malaysia were sent to China and

India after five and nine generations respectively. First, amulti-trait animal model was used to

analyse the BW in different countries as different traits. The results indicate a strong G 9 E.

Second, a genetically structured environmental variancemodel, implemented using Bayesian

inference, was used to analyse micro-environmental sensitivity of BW in each country. The

analysis revealed the presence of genetic heterogeneity of both BW and its environmental

variance in all environments. The presence of genetic variation in residual variance of BW

implies that the residual variance can be modified by selection. Incorporating both G 9 E and

micro-environmental sensitivity information may help in selecting robust genotypes with

high performance across environments and resilience to environmental fluctuations.

Keywords aquaculture breeding, genetic heterogeneity of environmental variance, Nile

tilapia, resilience

Introduction

Robustness, ‘the ability to combine a high production

potential with resilience to stressors, allowing for unprob-

lematic expression of a high production potential in a wide

variety of environmental conditions’ (Knap 2005), has

become a highly desirable breeding goal in the globalized

agricultural market. Studies have shown that relative

performance of the same genotype can vary markedly in

different macro-environments characterized by, for example,

different production systems or climatic conditions (Khaw

et al. 2012; Sae-Lim et al. 2015b). Recent evidence suggests

that genotypes can also adapt differently to changes in

micro-environments characterized by small-scale spatial or

temporal environmental perturbations (Mulder et al. 2013).

Thus, environmental sensitivity to changes in either the

macro- and micro-environment are two important compo-

nents of robustness (Strandberg et al. 2013).

Genotype-by-environment interaction (G 9 E) is defined as

themean phenotypic changes of a given genotype in different

environments (Falconer & Mackay 1996). The response of

the genotypes to measurable levels of environmental factors,

such as water temperature, nutrition and production envi-

ronments, is termed ‘macro-environmental sensitivity’
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(Mulder et al.2013). G 9 E can be used as an indication of the

presence of genetic variation in macro-environmental sensi-

tivity. The presence of G 9 E may imply that the best

genotype in one environment is not the best in other

environments, leading to genotype re-ranking across envi-

ronments in regards to genetic merit, which could potentially

reduce the effectiveness of breeding programmes. Micro-

environmental sensitivity, in contrast, refers to the ability of a

genotype to be buffered against local unknown environmen-

tal fluctuations in a single environment (Falconer & Mackay

1996). It can be quantified by the magnitude of environ-

mental variance of a specific trait, and the genetic influence

on this environmental variance is quantified by the degree of

genetic heterogeneity of environmental variance (San Cris-

tobal-Gaudy et al. 1998; Hill & Mulder 2010).

Both, G 9 E and micro-environmental sensitivity are

important robustness components of aquaculture produc-

tion, in which breeding stock is disseminated to numerous

different environments. Many aquaculture species are grown

in open uncontrolled environments such as outdoor ponds or

cages. Changing the environmental variables in the produc-

tion rearing locations to be similar to the nucleus breeding

environment may be expensive and impractical. Thus,

breeding for robustness could be a desirable breeding goal

in aquaculture. Although low G 9 E maximizes consistency

in performance across rearing systems in the sameor different

countries, low micro-environmental sensitivity improves

uniformity in performance, for example, in body weight at

harvest (BW) (Ibanez-Escriche et al. 2008; Janhunen et al.

2012). This is of particular importance for tilapia, the second

largest farmed aquaculture species worldwide.

To improve the performance of tilapia, WorldFish has

continued the Genetically Improved Farmed Tilapia (GIFT)

strain breeding programme in Malaysia, after its original

establishment in the Philippines (Ponzoni et al. 2011).

Currently, GIFT is disseminated to over 16 countries

worldwide. However, only a few of these countries have

their own breeding programme. The main challenge facing

such a multi-environment breeding programme is to select

fish with high performance across environments and

resilience to environmental perturbation, i.e. ‘robust fish’

having low environmental sensitivity across a wide range of

environmental conditions. The objectives of this study were

(i) to quantify the degree of G 9 E by assessing the growth

performance of GIFT across three different countries

(Malaysia, India and China) and (ii) to quantify the genetic

heterogeneity of environmental variance for BW in GIFT as

a measure of micro-environmental sensitivity.

Materials and methods

Data source and breeding programme management

Data were obtained from the WorldFish GIFT breeding

programme. The programme began in late 2001 with the

introduction of 63 families, from the sixth generation of the

selection programme of the GIFT Foundation International in

the Philippines, to theAquaculture Extension Center, Depart-

ment of Fisheries, Jitra, Malaysia. Average family size was 35

individuals with an average weight of 10 g. Individuals were

reared to an averageweight of 250 g. Mating started in 2002

to establish the first generation of the GIFT breeding

programme in Malaysia. Selection was based on BW. Two

lines, named the selection line and control line, were formed

based on high and average estimated breeding values of BW

respectively (for more information, see Ponzoni et al. 2011;

Hamzah et al. 2014). Selection was carried out for 13

generations in Malaysia. Representatives of 60 families

chosen at random from the fifth and the ninth generations

of the selection line of GIFT selection programme in Malaysia

were then sent to Wuxi City, China, and the Rajiv Gandhi

Centre for Aquaculture, Andhra Pradesh, India respectively,

where satellite breeding programmes were established.

Selection based on BW was then carried out for three and

four generations in China and India respectively. Selection

was based on between- and within-family selection; thus

descendants from the same founder families were represented

in each of the three environments. The total number of

records in Malaysia was 46 438, representing 1131 full-sib

families from13generations,whereas for Chinaand India the

total numbers of records were 7053 representing 221 full-sib

families from three generations and 11 205 representing 216

full-sib families from four generations respectively (Table 1).

Statistical analysis

First, a multi-trait animal model was used for the genetic

analysis of the G 9 E by analysing the BW in different

countries as different traits. Second, a single trait genetically

structured environmental variance model, implemented

using Bayesian inference, was used to analyse micro-

environmental sensitivity of BW in each country.

Genetic analysis for G 9 E

Data records and pedigree information from the three

environments—Malaysia, India and China—were

Table 1 Descriptive statistics of the raw data of Genetically Improved

Farmed Tilapia reared in Malaysia, China and India.

Malaysia India China

No. of records 46 438 11 205 7053

No. of generations 13 4 3

No. of families 1131 216 212

Average family size 41 52 32

Average grow-out period (days) 230 232 344

Average body weight at

harvest (BW) (g)

222 313 244

Standard deviation of BW (g) 87.77 93.20 108.67

Coefficient of variation for BW 0.40 0.30 0.45
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combined. The full pedigree of the GIFT in the three

environments consisted of 64 696 individuals representing

1568 full-sib families. To meet the normal distribution

assumptions of the linear models used in data analysis, BW

values were transformed to a square root. Due to differences

in rearing conditions in each environment, the fixed effects

models across the three countries were as follows:

In Malaysia : yijkl ¼ lþ Ri þ ðS � SP � LÞj
þ bl � AGEijkðSP � LÞl þ eijkl; ð1Þ

In China : yijk ¼ lþ Ri þ ðS � SPÞj þ b � AGEijk þ eijk and

ð2Þ

In India : yijk ¼ lþ Ri þ ðS � SPÞj þ b � AGEijk þ eijk; ð3Þ

where y is the square root of BW; l is the population mean;

S is the fixed effect of sex (female, male); SP is the fixed effect

of spawning season (13 levels in Malaysia, three levels in

China and four levels in India); L is fixed effect of line j

(control, selection); R is the fixed effect of rearing system i

(cage, pond); S*SP*L is the combined effects of sex,

spawning season and line; S*SPj is the combined effects of

sex and spawning season; AGE is the harvest age (nested

within spawning season and line in Malaysia) as a linear

covariate; and e is the residual.

A multi-trait animal model was used assuming BW in

each of the three countries as a different trait to estimate the

heritability (h2), common environmental effects (environ-

mental effect common to full sibs, i.e. hapa within pond)

and genetic correlations using AIREMLF90 (Misztal et al.

2015). The full dataset with full pedigree information for

the three environments was used to get unbiased estimates

of the variance components and genetic parameters (Hen-

derson 1975). Estimates of the genetic correlations of BWs

between environments were used as a measure of the

magnitude of G 9 E (genotype re-ranking). The mixed

model in a matrix notation was:

y ¼ Xbþ ZaþWcþ e;

where y is a vector of the square root of the observed

phenotypes of BW at three different countries;X, Z andW are

incidence matrices; a is the additive genetic effect of individ-

ual animals; c is the vector of common environmental full-sib

effects; b is the vector of fixed effects for each environment as

mentioned above and e is the vector of residuals. The

variance–covariance structure can be written as:

V
a
c
e

0
@

1
A ¼

A� G 0 0
0 I � C 0
0 0 I � R

0
@

1
A;

where A is the additive genetic relationship matrix; G, C and

R are the additive genetic, common environmental and

residual environmental (co)variances matrices respectively, I

is the identity matrix and ⊗ denotes the Kronecker product.

To provide estimates of the genetic correlations between

the GIFT from different countries immediately after trans-

ferring the fish to India and China, and to monitor their

trends over subsequent generations, the analysis of the

multi-trait animal model was repeated on a reduced dataset

containing BWs for each generation of both fish in India

and China together with the full data of fish in Malaysia.

Analysis of the genetic heterogeneity of environmental
variance

The genetically structured environmental variance model

proposed by San Cristobal-Gaudy et al. (1998) and imple-

mented into the Bayesian GSEVM-v.2 software (Ibanez-

Escriche et al. 2010) was used to analyse the heterogeneity

of environmental variance of the GIFT in each country as a

single trait analysis. This model assumes an exponential

distribution for the residual variance after systematic (fixed)

and common environmental effects and additive genetic

effects on the trait mean, BW, have been accounted for and

follows the form:

yjb;a; c; r2e �NðXbþ ZaþWc;Diagðr2eiÞni¼1Þ;

where Diagðr2eiÞni¼1 is the environmental variance diagonal

matrix with diagonal entries r2ei and

lnðr2eiÞni ¼ X�b� þ Z�a� þW�c�:

The parameters and matrices related to the environmen-

tal variance are denoted with asterisks (*). Vectors b and b*
contain fixed effects in each environment as stated above,

and a* is a column vector of additive genetic values

affecting environmental variation of body weight. The

genetic effects (a, a*) were assumed to be multi-variate

normally distributed:

a
a� jG

� �
�N

0
0

� �
;G� A

� �
;

G ¼ r2a qrara�
qrara� r2a�

� �
;

where G is the matrix of additive genetic (co)variances, A is

the additive genetic relationship matrix, the elements of G

are the genetic variances associated with (a, a*) and q is the

coefficient of correlation. Vectors c and c* contain the

common environmental effects for full-sibs in each envi-

ronment and are assumed to be normally distributed:

cjr2c
� ��N 0; Ir2c

� �

c�jr2c�
� ��N 0; Ir2c�

� �

Details of the a priori distributions for vectors b and b*,
the variance–covariance parameters and the Markov chain

Monte Carlo (MCMC) implementation to fit the model are

described by Sorensen & Waagepetersen (2003). Each
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MCMC run consisted of 1 000 000 iterations with a burn-in

period of 100 000 iterations. Convergence was tested using

the criterion described by Gelman & Rubin (1992). Apply-

ing the model to the untransformed observed BWs resulted

in lack of convergence, although up to 1 million iterations

were used in the analysis. Therefore, to meet the normal

distribution assumptions of the linear models used in the

analysis and to achieve model convergence, BWs were

transformed to square root, in line with the G 9 E analyses

above.

Results

G 9 E

The descriptive statistics of the raw data of GIFT reared in

Malaysia, China and India are shown in Table 1. The

average BW of GIFT reared in India was substantially

higher for similar or shorter age at harvest than for those

reared in Malaysia and China, whereas the coefficient of

variation was lower for the GIFT in India than in those in

Malaysia and China. The estimates of phenotypic and

genetic parameters for growth traits in each production

environment, estimated using a multi-trait animal model,

are shown in Table 2. Similar additive genetic variances

were observed in the GIFT reared in Malaysia (1.84) and

China (1.74), but a lower additive genetic variance was

calculated for those reared in India (0.72). The heritability

estimates were 0.29 and 0.31 for GIFT reared in Malaysia

and China respectively, but lower heritability (0.18) was

observed for those reared in India. Genetic correlations for

BW for GIFT reared in Malaysia and China were 0.70,

whereas genetic correlations for BW for those reared in

India and Malaysia and in India and China were 0.37 and

0.33 respectively (Table 3). Overall, low to moderate genetic

correlation of BW was found across different environments,

which is indicative of the presence of G 9 E. Furthermore,

genetic correlations between GIFT reared in Malaysia and

India and those reared in China and India were even lower

(i.e. below 0.2) for the first few generations after transfer-

ring the fish but increased towards the corresponding

estimates for the full dataset over successive generations. In

contrast, the estimates for genetic correlation between GIFT

reared Malaysia and China were similar to the estimate

obtained for the full dataset and remained stable over

successive generations (Fig. 1).

Micro-environmental sensitivity

Markov chain Monte Carlo estimates of the posterior means

and 95% highest posterior intervals for genetic variance for

the GIFT reared in Malaysia, China and India, applied to

square root transformed body weight, are shown in Table 4.

The posterior means of the additive genetic variances of BW

at the level of the mean were 0.45, 1.90 and 0.70 for GIFT

reared in Malaysia, China and India respectively. A consid-

erable additive genetic variance of BW at the level of the

variance (r2a� ), with the 95% highest posterior interval that

did not include zero, was found in GIFT reared in Malaysia

(0.34) and China (0.31), whereas a lower estimate (0.12)

was observed for those reared in India. The posterior mean

of the genetic correlations between the additive genes

affecting the mean of transformed BW and its variance

(95% highest posterior interval) of GIFT reared in Malaysia

and China were �0.53 (�0.47, �0.59) and �0.70 (�0.80,

�0.60) respectively. For GIFT reared in India, a lower

posterior mean of the genetic correlation (�0.03) with the

95% highest posterior interval that includes zero (�0.17,

+0.11) was observed.

Discussion

This study combined data from 1131, 216 and 221 full-sib

families of GIFT reared in Malaysia, China and India

respectively, with family sizes exceeding 32 individuals

(Table 1). Sae-Lim et al. (2015b) recommended that, for

moderately heritable traits (h2 = 0.3), i.e. growth, the

optimal data for investigating G 9 E and micro-environ-

mental sensitivity consists of at least 100 full-sib families,

each with at least 10 individuals for the G 9 E and 39

individuals for micro-environmental sensitivity. Therefore,

the data for this study were highly suitable for investigating

G 9 E and micro-environmental sensitivity.

G 9 E

The presence of G 9 E indicates re-ranking of breeding

values of genotypes across environments. Hence, selection

in one environment may not lead to the same expected

genetic gain in other production environments (Mulder &

Bijma 2005). Practically, genotype re-ranking should be

considered in breeding programmes when genetic correla-

tion is below 0.8 (Robertson 1959; Mulder & Bijma 2005).

The presence of the identified moderate to severe G 9 E in

the studied GIFT populations may thus lead to re-ranking of

genotypes across countries in regards to the genetic merit

for growth, which may reduce the genetic gain and

decrease the efficiency of selection (Mulder et al. 2006).

In line with this study, Sae-Lim et al. (2013) found strong

G 9 E in Rainbow Trout reared in different countries.

However, previous studies reported weak G 9 E in GIFT

(e.g. Khaw et al. 2012). A fundamental difference between

ours and most previous G 9 E studies on GIFT is that, in the

latter studies, the environment was usually changed after

full-sibs had been reared in the same hapas for a few

months post hatching. In contrast, in the present study,

differences in the environment occurred from birth, thus

affecting the entire rather than only the latter part of the

developmental stages of the fish. To the best of our

knowledge, no empirical study to date has monitored the

© 2018 The Authors. Animal Genetics published by
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evolution of G 9 E caused by selection in different environ-

ments over time. Our study revealed that genetic correla-

tions can indeed change over successive generations.

However, without additional data (e.g. genomic information

or environmental parameters such as water temperature or

photo-period over time), determining the causative factors

for the observed G 9 E patterns would only be speculative.

Micro environmental sensitivity

The genetically structured environmental variance model

assumes that there are genes controlling not only the mean

of a trait but also its variance (San Cristobal-Gaudy et al.

1998). Our results show the presence of a considerable

additive genetic variance for both the mean transformed

BW (r2a) and its variance (r2a� ) in GIFT. Evidence for genetic

variation in micro-environmental sensitivity was found in

the BW of GIFT (Khaw et al. 2012; Marjanovic et al. 2016),

Rainbow Trout (Janhunen et al. 2012; Sae-Lim et al.

2015a) and Atlantic salmon (Sonesson et al. 2013). The

presence of genetic variation in the residual variance of BW

implies that the residual variance can be modified by

selection. This can be quantified using the formula of

Sonesson et al. (2013), r2enew ¼ r2
eold

� expðDGvÞ, where r2enew
is the residual variance after selection, r2

eold
is the residual

variance prior to selection and DGv is the genetic gain on

the underlying log scale of the variance, given by the

genetic standard deviation ra*. The genetic standard devi-

ation of the residual variance indicates the proportional

change in residual variance when increasing/decreasing

the residual variance breeding value by one standard

deviation unit. For the GIFT populations in this study, the

genetic deviations in the variance models of Malaysia, India

and China were 0.58, 0.55 and 0.34 respectively. Hence, a

unit standard deviation decrease of the breeding value for

variance would decrease the residual variance by 44% [exp

(�0.58) = 0.56] in Malaysia and by 42% in China, whereas

in India the corresponding decrease would be 30%. The

genetic standard deviation of the residual variance is

valuable because it can be used to compare the results of

different experiments and species, as it is not dependent on

the phenotypic variance (Mulder et al. 2007). In line with

our results, Sonesson et al. (2013) found an equivalent

decrease by 36% for the residual variance of harvest body

weight in Atlantic salmon.

Using the Bayesian GSEVM v.2 software has an advantage

over non-Bayesian methods of considering common mater-

nal environmental effects; however, due to technical issues,

Table 2 Mean and its standard errors of phenotypic (VP), genetic (VA), common environmental (VC) and residual (VR) variance estimates,

heritability (h2), common environmental effect (c2) and their standard errors (SE) for body weight at harvest of Genetically Improved Farmed Tilapia

in each production environment.

Environment VP VA VC VR h2 � SE c2 � SE

Malaysia 6.25 � 0.12 1.84 � 0.03 2.43 � 0.12 1.98 � 0.02 0.29 � 0.01 0.39 � 0.01

China 5.60 � 0.10 1.74 � 0.03 1.70 � 0.10 2.62 � 0.03 0.31 � 0.01 0.30 � 0.03

India 4.07 � 0.21 0.72 � 0.01 0.73 � 0.20 2.16 � 0.04 0.18 � 0.01 0.18 � 0.02

Table 3 Genetic correlations and (�) standard errors for geno-

type 9 environment interaction for body weight at harvest of Genet-

ically Improved Farmed Tilapia.

Environment India China

Malaysia 0.37 � 0.01 0.71 � 0.01

China 0.33 � 0.01
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Figure 1 Trend of the genetic correlation and its � standard error for body weight at harvest for each generation post transfer to either India or

China together with the full data for Malaysia.
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it cannot incorporate a covariance for common environ-

mental effects on mean and variance. Furthermore, the

GSEVM v.2 software incorporates an animal model to estimate

genetic parameters for both mean and variance. Although

Bayesian methods are known to deal well with uncertainty

in data, the fact that only single observations per animal

were available may indeed explain the observed discrepancy

in the estimates for the additive genetic variances in mean

performance between the models for G 9 E and micro-

environmental sensitivity (Sorensen & Waagepetersen

2003). This may also have influenced the estimate of the

posterior mean of the corresponding genetic correlation

(Marjanovic et al. 2016). The posterior mean (and 95%

credibility interval) of the genetic correlation between the

additive genes affecting the mean transformed BW and its

variance of GIFT reared in Malaysia and China were

moderate and negative in our study. This would indicate

that selection for greater (transformed) BW of GIFT would

simultaneously increase uniformity in this trait. Marjanovic

et al. (2016) found different signs, but similar magnitude

(0.60 � 0.09), for the genetic correlations between the

additive genes affecting the mean of body weight and its

variance using a Box-Cox transformed dataset of 6090

individuals from the same GIFT population in Malaysia.

Data transformations, although common and justified in

aquaculture, may affect genetic uniformity parameter

estimates (Janhunen et al. 2012; Marjanovic et al. 2016).

Different signs of the genetic correlation estimates were

found when using original and transformed body weight

data in Rainbow Trout (Sae-Lim et al. 2015a) and in

Atlantic salmon (Sonesson et al. 2013). Thus, it cannot be

excluded that uniformity parameter estimates in our study

may partly depend on the chosen square root BW transfor-

mation. Nevertheless, the latter was deemed as most

appropriate, not only because it best satisfied the normality

assumptions of the statistical models but also because it

facilitates direct comparison with the G 9 E analysis results.

Implications for breeding

Improving the efficiency of breeding programmes for better

farmed fish performance across multiple environments is

crucial in a globalized aquaculture market. Our results

indicate a potential high re-ranking of breeding candidates

in GIFT. These results have important implications for

global breeding programmes for tilapia and other species.

The presence of G 9 E means that the selection pro-

gramme in Malaysia may not be effective in producing fish

that also grow faster in other countries. Several strategies

can be used to reduce the consequences of the presence of

the G 9 E such as (i) identifying and modifying the

environmental conditions of the rearing environments,

(ii) running sib evaluations in all environments or (iii)

dividing the breeding programme into several environ-

ment-specific breeding programmes (Mulder et al. 2006).

For GIFT, identifying the environmental variables causing

G 9 E and modifying the rearing environment to be

similar to the nucleus is expensive and not feasible.

However, collecting sib performance records in the rearing

environments could be an option, as this can be used to

calculate environment-specific breeding values. Dividing a

single breeding programme of GIFT into several environ-

ment-specific breeding programmes could be a viable

alternative. However, developing a separate breeding

programme of GIFT for each environment requires large

investment and high running costs and, therefore, should

be based on a complete cost–benefit study. The identified

additive genetic effects controlling the environmental

variance of GIFT body weights in different environments

creates an opportunity for reducing variation among

individuals by selection and thus improving uniformity

in harvest weight, which would ease the grading and

processing of fish (Mulder et al. 2008). Selection for

reducing residual variation has already proved to be

successful in rabbits, where it led to more homogeneous

litters (Garreau et al. 2008).

Finally, it would be of considerable value to extend the

single-trait genetic micro-environmental sensitivity models

to multi-trait models in order to combine the G 9 E and

micro-environmental sensitivity aspects of robustness into

one breeding goal. Selection for this multi-faceted robust-

ness may improve animal performance and resilience to

local environmental fluctuations in different production

environments simultaneously.

Table 4 Posterior means (PM) and 95% highest posterior density intervals (HPD95%) of variance components and the genetic additive correlation

(q) between the additive genes affecting the mean body weight at harvest of Genetically Improved Farmed Tilapia and its variance.

Variance component

Malaysia China India

PM HPD95% PM HPD95% PM HPD95%

r2a 0.45 0.44 0.46 1.90 2.18 1.62 0.70 0.47 0.93

r2c 3.38 3.22 3.55 1.67 1.90 1.44 1.36 1.19 1.53

r2a� 0.34 0.31 0.37 0.31 0.39 0.23 0.12 0.09 0.15

r2c� 0.14 0.12 0.15 0.122 0.08 0.16 0.09 0.07 0.11

q �0.53 �0.47 �0.59 �0.70 �0.80 �0.60 �0.03 �0.17 0.11

r2aðr2a�Þ, additive variance at the level of the mean (variance); r2c ðr2c�Þ, permanent environmental variance at the level of the mean (variance).

© 2018 The Authors. Animal Genetics published by
John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics, doi: 10.1111/age.12680
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Conclusion

Strong G 9 E was found in the BW of GIFT reared in three

different countries: Malaysia, India and China. The environ-

mental variance of BW in GIFT is partly genetically deter-

mined. Integrating both G 9 E and micro-environmental

sensitivity information may help to select robust genotypes

with high performance across environments and resilience to

environmental fluctuations. Implementing robustness into

the breeding objective could be useful in improving multi-

environmental breeding programmes.
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