Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh

cg.contribution.worldfishauthorBelton, B.en_US
cg.contribution.worldfishauthorHaque, A.M.en_US
cg.contribution.worldfishauthorAli, H.en_US
cg.contribution.worldfishauthorKhondker, M.en_US
cg.contributor.affiliationMichigan State Universityen_US
cg.contributor.affiliationWorldFishen_US
cg.contributor.affiliationAlliance Bioversity International-International Center for Tropical Agricultureen_US
cg.contributor.funderUnited States Agency for International Developmenten_US
cg.contributor.initiativeAquatic Foodsen_US
cg.contributor.initiativeAsian Mega-Deltasen_US
cg.coverage.countryBangladeshen_US
cg.coverage.regionSouthern Asiaen_US
cg.creator.idA.B.M. Mahfuzul Haque: 0000-0002-5334-5630en_US
cg.creator.idHazrat Ali: 0000-0002-6303-1336en_US
cg.creator.idMurshed-E-Jahan Khondker: 0000-0001-9933-8631en_US
cg.description.themeAquacultureen_US
cg.identifier.statusOpen accessen_US
cg.identifier.urlhttps://cgspace.cgiar.org/handle/10568/127061en_US
cg.subject.actionAreaResilient Agrifood Systemsen_US
cg.subject.agrovocfood systemsen_US
cg.subject.agrovocgoal 1 no povertyen_US
cg.subject.agrovocgoal 2 zero hungeren_US
cg.subject.agrovocgoal 14 life below wateren_US
cg.subject.agrovocgoal 13 climate actionen_US
cg.subject.agrovocgoal 15 life on landen_US
cg.subject.agrovocgoal 8 decent work and economic growthen_US
cg.subject.agrovocfishen_US
cg.subject.impactAreaClimate adaptation and mitigationen_US
cg.subject.impactAreaNutrition, health and food securityen_US
cg.subject.impactAreaPoverty reduction, livelihoods and jobsen_US
cg.subject.sdgSDG 1 - No povertyen_US
cg.subject.sdgSDG 2 - Zero hungeren_US
cg.subject.sdgSDG 8 - Decent work and economic growthen_US
cg.subject.sdgSDG 13 - Climate actionen_US
cg.subject.sdgSDG 14 - Life below wateren_US
cg.subject.sdgSDG 15 - Life on landen_US
dc.creatorBelton, B.en_US
dc.creatorHaque, A.M.en_US
dc.creatorAli, H.en_US
dc.creatorNejadhashemi, A.en_US
dc.creatorHernandez, R.en_US
dc.creatorKhondker, M.en_US
dc.creatorFerriby, H.en_US
dc.date.accessioned2023-06-11T10:34:38Z
dc.date.available2023-06-11T10:34:38Z
dc.date.issued2022en_US
dc.description.abstractThe presentation detailed the use of machine learning techniques to extract information from freely available satellite images and estimate the area of waterbodies used for aquaculture in seven districts in southern Bangladesh, one of country’s most important aquaculture zones producing fish for domestic markets and crustaceans for export. The research combined machine learning derived estimates of aquaculture farm area per district with data from statistically representative farm surveys to estimate farm size, productivity, and total output, economic value of production, on-farm employment generation by gender, and demand for formulated and non-formulated feeds.en_US
dc.formatPDFen_US
dc.identifier.citationBen Belton, A. B. M. Haque, Hazrat Ali, Amirpouyan Nejadhashemi, Ricardo Hernandez, Murshed-E-Jahan Khondker, Hannah Ferriby. (1/12/2022). Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh. United States of America: Mississippi State University, Feed the Future Innovation Lab for Fish (MS State - Fish Innovation Lab).en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12348/5526
dc.languageenen_US
dc.publisherMississippi State University, Feed the Future Innovation Lab for Fish (MS State - Fish Innovation Lab)en_US
dc.rightsCC-BY-4.0en_US
dc.subjectclimate adaptation and mitigationen_US
dc.subjectnutrition, health and food securityen_US
dc.subjectpoverty reduction, livelihoods and jobsen_US
dc.titleHarnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladeshen_US
dc.typePresentationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
19482d08d47e2803540112beda7d8f8a.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format
Description:
WP2_AMD_Presentation_Machine_Learning.pdf

Collections