Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh
cg.contribution.worldfishauthor | Belton, B. | en_US |
cg.contribution.worldfishauthor | Haque, A.M. | en_US |
cg.contribution.worldfishauthor | Ali, H. | en_US |
cg.contribution.worldfishauthor | Khondker, M. | en_US |
cg.contributor.affiliation | Michigan State University | en_US |
cg.contributor.affiliation | WorldFish | en_US |
cg.contributor.affiliation | Alliance Bioversity International-International Center for Tropical Agriculture | en_US |
cg.contributor.funder | United States Agency for International Development | en_US |
cg.contributor.initiative | Aquatic Foods | en_US |
cg.contributor.initiative | Asian Mega-Deltas | en_US |
cg.coverage.country | Bangladesh | en_US |
cg.coverage.region | Southern Asia | en_US |
cg.creator.id | A.B.M. Mahfuzul Haque: 0000-0002-5334-5630 | en_US |
cg.creator.id | Hazrat Ali: 0000-0002-6303-1336 | en_US |
cg.creator.id | Murshed-E-Jahan Khondker: 0000-0001-9933-8631 | en_US |
cg.description.theme | Aquaculture | en_US |
cg.identifier.status | Open access | en_US |
cg.identifier.url | https://cgspace.cgiar.org/handle/10568/127061 | en_US |
cg.subject.actionArea | Resilient Agrifood Systems | en_US |
cg.subject.agrovoc | food systems | en_US |
cg.subject.agrovoc | goal 1 no poverty | en_US |
cg.subject.agrovoc | goal 2 zero hunger | en_US |
cg.subject.agrovoc | goal 14 life below water | en_US |
cg.subject.agrovoc | goal 13 climate action | en_US |
cg.subject.agrovoc | goal 15 life on land | en_US |
cg.subject.agrovoc | goal 8 decent work and economic growth | en_US |
cg.subject.agrovoc | fish | en_US |
cg.subject.impactArea | Climate adaptation and mitigation | en_US |
cg.subject.impactArea | Nutrition, health and food security | en_US |
cg.subject.impactArea | Poverty reduction, livelihoods and jobs | en_US |
cg.subject.sdg | SDG 1 - No poverty | en_US |
cg.subject.sdg | SDG 2 - Zero hunger | en_US |
cg.subject.sdg | SDG 8 - Decent work and economic growth | en_US |
cg.subject.sdg | SDG 13 - Climate action | en_US |
cg.subject.sdg | SDG 14 - Life below water | en_US |
cg.subject.sdg | SDG 15 - Life on land | en_US |
dc.creator | Belton, B. | en_US |
dc.creator | Haque, A.M. | en_US |
dc.creator | Ali, H. | en_US |
dc.creator | Nejadhashemi, A. | en_US |
dc.creator | Hernandez, R. | en_US |
dc.creator | Khondker, M. | en_US |
dc.creator | Ferriby, H. | en_US |
dc.date.accessioned | 2023-06-11T10:34:38Z | |
dc.date.available | 2023-06-11T10:34:38Z | |
dc.date.issued | 2022 | en_US |
dc.description.abstract | The presentation detailed the use of machine learning techniques to extract information from freely available satellite images and estimate the area of waterbodies used for aquaculture in seven districts in southern Bangladesh, one of country’s most important aquaculture zones producing fish for domestic markets and crustaceans for export. The research combined machine learning derived estimates of aquaculture farm area per district with data from statistically representative farm surveys to estimate farm size, productivity, and total output, economic value of production, on-farm employment generation by gender, and demand for formulated and non-formulated feeds. | en_US |
dc.format | en_US | |
dc.identifier.citation | Ben Belton, A. B. M. Haque, Hazrat Ali, Amirpouyan Nejadhashemi, Ricardo Hernandez, Murshed-E-Jahan Khondker, Hannah Ferriby. (1/12/2022). Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh. United States of America: Mississippi State University, Feed the Future Innovation Lab for Fish (MS State - Fish Innovation Lab). | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12348/5526 | |
dc.language | en | en_US |
dc.publisher | Mississippi State University, Feed the Future Innovation Lab for Fish (MS State - Fish Innovation Lab) | en_US |
dc.rights | CC-BY-4.0 | en_US |
dc.subject | climate adaptation and mitigation | en_US |
dc.subject | nutrition, health and food security | en_US |
dc.subject | poverty reduction, livelihoods and jobs | en_US |
dc.title | Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh | en_US |
dc.type | Presentation | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 19482d08d47e2803540112beda7d8f8a.pdf
- Size:
- 2.78 MB
- Format:
- Adobe Portable Document Format
- Description:
- WP2_AMD_Presentation_Machine_Learning.pdf