Climate Information Systems (CIS) for Aquaculture: Development of a temperature-based early warning alert system for fish farmers in Zambia
cg.contribution.worldfishauthor | Mudege, N. | en_US |
cg.contribution.worldfishauthor | Hossain, P.R. | en_US |
cg.contribution.worldfishauthor | Lundeba, M. | en_US |
cg.contributor.affiliation | International Water Management Institute | en_US |
cg.contributor.affiliation | WorldFish | en_US |
cg.contributor.affiliation | Stellenbosch University | en_US |
cg.contributor.funder | Alliance Bioversity International and CIAT | en_US |
cg.contributor.project | Accelerating Impacts of CGIAR Climate Research for Africa -ZAMBIA | en_US |
cg.coverage.country | Zambia | en_US |
cg.coverage.region | Eastern Africa | en_US |
cg.creator.id | Netsayi Mudege: 0000-0002-0389-1967 | en_US |
cg.creator.id | Peerzadi Rumana Hossain: 0000-0002-1125-284X | en_US |
cg.creator.id | Mary Lundeba: 0000-0001-8274-0800 | en_US |
cg.description.theme | Aquaculture | en_US |
cg.identifier.status | Timeless limited access | en_US |
cg.identifier.url | https://mel.cgiar.org/dspace/limited | en_US |
cg.subject.agrovoc | weather | en_US |
cg.subject.agrovoc | temperature | en_US |
cg.subject.agrovoc | fish | en_US |
cg.subject.impactArea | Climate adaptation and mitigation | en_US |
cg.subject.sdg | SDG 1 - No poverty | en_US |
cg.subject.sdg | SDG 2 - Zero hunger | en_US |
dc.creator | Stander, H. | en_US |
dc.creator | Mudege, N. | en_US |
dc.creator | Hossain, P.R. | en_US |
dc.creator | Lundeba, M. | en_US |
dc.date.accessioned | 2024-02-27T10:10:53Z | |
dc.date.available | 2024-02-27T10:10:53Z | |
dc.date.issued | 2023 | en_US |
dc.description.abstract | This paper presents a temperature-based early warning alert system for fish farmers in Zambia. The decision support tool indicating the conditions under which air temperatures may result in a normal, high risk or emergency scenario, combined with the monitoring and management mitigations recommended under each scenario. During model development, five models were compared, including linear regression, stochastic regression, deep learning, random forest, and decision tree. The data was modelled for a pond designed according to best aquaculture practices, and therefore, pond size and pond depth are constants. | en_US |
dc.format | en_US | |
dc.identifier.citation | HB Stander, Netsayi Mudege, Peerzadi Hossain, Mary Lundeba. (30/12/2023). Climate Information Systems (CIS) for Aquaculture: Development of a temperature-based early warning alert system for fish farmers in Zambia. Stellenbosch, South Africa: Stellenbosch University (SU). | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12348/5818 | |
dc.language | en | en_US |
dc.publisher | Stellenbosch University (SU) | en_US |
dc.rights | CC-BY-NC-4.0 | en_US |
dc.subject | decision tools | en_US |
dc.subject | climate information | en_US |
dc.title | Climate Information Systems (CIS) for Aquaculture: Development of a temperature-based early warning alert system for fish farmers in Zambia | en_US |
dc.type | Presentation | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- b0920c1bbc269ed944e6decceb88f9db.pdf
- Size:
- 1.79 MB
- Format:
- Adobe Portable Document Format
- Description:
- WorldFish_Project_Presentation.pdf