Show simple item record

dc.creatorAlmaraz, M.en_US
dc.creatorHoulton, B.Z.en_US
dc.creatorClark, M.en_US
dc.creatorHolzer, I.en_US
dc.creatorZhou, Y.en_US
dc.creatorVang, L.en_US
dc.creatorMoberg, E.en_US
dc.creatorManaigo, E.en_US
dc.creatorHalpern, B.S.en_US
dc.creatorScarborough, C.en_US
dc.creatorLei, X.G.en_US
dc.creatorHo, M.en_US
dc.creatorAllison, E.en_US
dc.creatorSibanda, L.en_US
dc.creatorSalter, A.en_US
dc.date.accessioned2024-01-14T13:51:28Z
dc.date.available2024-01-14T13:51:28Z
dc.date.issued2023en_US
dc.identifier.citationMaya Almaraz, Benjamin Houlton, Michael Clark, Iris Holzer, Yanqiu Zhou, Laura Vang, Emily Moberg, Erin Manaigo, Benjamin Halpern, Courtney Scarborough, Xin Lei, Melissa Ho, Edward (Eddie) Allison, Lindiwe Majele Sibanda, Andrew Salter. (6/9/2023). Model-based scenarios for achieving net negative emissions in the food system. PLOS Climate.en_US
dc.identifier.issn2767-3200en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12348/5759
dc.description.abstractMost climate mitigation scenarios point to a combination of GHG emission reductions and CO2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO2. However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies.en_US
dc.formatPDFen_US
dc.languageenen_US
dc.publisherPublic Library of Scienceen_US
dc.rightsCC-BY-4.0en_US
dc.sourcePLOS Climate;(2023)en_US
dc.subjectclimate scenariosen_US
dc.titleModel-based scenarios for achieving net negative emissions in the food systemen_US
dc.typeJournal Articleen_US
cg.contributor.funderWorld Wildlife Funden_US
cg.contributor.funderUniversity of California-Santa Barbara, National Center for Ecological Analysis and Synthesisen_US
cg.contributor.funderRockefeller Foundationen_US
cg.contributor.funderWellcome Trusten_US
cg.subject.agrovocmodelsen_US
cg.subject.agrovocfood systemsen_US
cg.subject.agrovocgreenhouse gas emissionsen_US
cg.contributor.affiliationUniversity of California-Davisen_US
cg.contributor.affiliationCornell Universityen_US
cg.contributor.affiliationUniversity of Oxforden_US
cg.contributor.affiliationUniversity of Copenhagenen_US
cg.contributor.affiliationWorldFishen_US
cg.contributor.affiliationAlliance for a Green Revolution in Africaen_US
cg.contributor.affiliationWorld Wildlife Funden_US
cg.contributor.affiliationUniversity of Nottingham, School of Biosciencesen_US
cg.contributor.affiliationUniversity of California-Santa Barbara, National Center for Ecological Analysis and Synthesisen_US
cg.contributor.affiliationUniversity of California-Santa Barbara, Bren School of Environmental Science and Managementen_US
cg.contributor.affiliationPrinceton University, High Meadows Environmental Instituteen_US
cg.identifier.statusOpen accessen_US
cg.contribution.worldfishauthorAllison, E.en_US
cg.description.themeClimate Changeen_US
dc.identifier.doihttps://dx.doi.org/10.1371/journal.pclm.0000181en_US
cg.subject.actionAreaResilient Agrifood Systemsen_US
cg.subject.impactAreaClimate adaptation and mitigationen_US
cg.contributor.initiativeAquatic Foodsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record